scispace - formally typeset
Search or ask a question

Showing papers on "Structural biology published in 2012"


Journal ArticleDOI
TL;DR: Computation of covariation patterns are expected to complement experimental structural biology in elucidating the full spectrum of protein structures, their functional interactions and evolutionary dynamics.
Abstract: Genomic sequences contain rich evolutionary information about functional constraints on macromolecules such as proteins. This information can be efficiently mined to detect evolutionary couplings between residues in proteins and address the long-standing challenge to compute protein three-dimensional structures from amino acid sequences. Substantial progress has recently been made on this problem owing to the explosive growth in available sequences and the application of global statistical methods. In addition to three-dimensional structure, the improved understanding of covariation may help identify functional residues involved in ligand binding, protein-complex formation and conformational changes. We expect computation of covariation patterns to complement experimental structural biology in elucidating the full spectrum of protein structures, their functional interactions and evolutionary dynamics.

613 citations


Journal ArticleDOI
09 Aug 2012-Nature
TL;DR: It is shown that changes in conformational entropy can determine whether protein–ligand interactions will occur, even among protein complexes with identical binding interfaces, despite the interfaces being essentially identical in the various complexes.
Abstract: How the interplay between protein structure and internal dynamics regulates protein function is poorly understood. Often, ligand binding, post-translational modifications and mutations modify protein activity in a manner that is not possible to rationalize solely on the basis of structural data. It is likely that changes in the internal motions of proteins have a major role in regulating protein activity, but the nature of their contributions remains elusive, especially in quantitative terms. Here we show that changes in conformational entropy can determine whether protein-ligand interactions will occur, even among protein complexes with identical binding interfaces. We have used NMR spectroscopy to determine the changes in structure and internal dynamics that are elicited by the binding of DNA to several variants of the catabolite activator protein (CAP) that differentially populate the inactive and active DNA-binding domain states. We found that the CAP variants have markedly different affinities for DNA, despite the CAP−DNA-binding interfaces being essentially identical in the various complexes. Combined with thermodynamic data, the results show that conformational entropy changes can inhibit the binding of CAP variants that are structurally poised for optimal DNA binding or can stimulate the binding activity of CAP variants that only transiently populate the DNA-binding-domain active state. Collectively, the data show how changes in fast internal dynamics (conformational entropy) and slow internal dynamics (energetically excited conformational states) can regulate binding activity in a way that cannot be predicted on the basis of the protein's ground-state structure.

467 citations


Journal ArticleDOI
Linfeng Sun1, Xin Zeng1, Chuangye Yan1, Xiuyun Sun1, Xinqi Gong1, Yu Rao1, Nieng Yan1 
18 Oct 2012-Nature
TL;DR: In this paper, X-ray crystal structures of XylE, an Escherichia coli xylose transporter, were reported, which is a bacterial homologue of the human glucose transporters GLUT1-4, complexed with glucose and its analogues.
Abstract: Glucose transporters are essential for metabolism of glucose in cells of diverse organisms from microbes to humans, exemplified by the disease-related human proteins GLUT1, 2, 3 and 4. Despite rigorous efforts, the structural information for GLUT1–4 or their homologues remains largely unknown. Here we report three related crystal structures of XylE, an Escherichia coli homologue of GLUT1–4, in complex with d-xylose, d-glucose and 6-bromo-6-deoxy-d-glucose, at resolutions of 2.8, 2.9 and 2.6 A, respectively. The structure consists of a typical major facilitator superfamily fold of 12 transmembrane segments and a unique intracellular four-helix domain. XylE was captured in an outward-facing, partly occluded conformation. Most of the important amino acids responsible for recognition of d-xylose or d-glucose are invariant in GLUT1–4, suggesting functional and mechanistic conservations. Structure-based modelling of GLUT1–4 allows mapping and interpretation of disease-related mutations. The structural and biochemical information reported here constitutes an important framework for mechanistic understanding of glucose transporters and sugar porters in general. A study of X-ray crystal structures of the Escherichia coli xylose transporter XylE, which is a bacterial homologue of the human glucose transporters GLUT1–4, complexed with glucose and its analogues yields a framework for understanding the molecular mechanism by which membrane proteins transport glucose and other sugars across cell membranes. Proteins that transport glucose across cellular membranes are essential for glucose metabolism in many organisms, from microbes to mammals. This Article reports three X-ray crystal structures of XylE — an Escherichia coli homologue of the GLUT family of human proteins — in complex with D-xylose, D-glucose and 6-bromo-6-deoxy-D-glucose. Structure-based modelling of GLUT1–4 enabled the authors to map known disease-related mutations, and the structural and biochemical information reported here provides a framework for understanding the molecular mechanism by which membrane proteins transport glucose and other sugars.

422 citations


Journal ArticleDOI
25 Oct 2012-Nature
TL;DR: In this paper, the structure and functional properties of P-glycoprotein from Caenorhabditis elegans and its crystal structure at a resolution of 3.4 angstroms were used to generate a homology model of the human protein.
Abstract: Biochemical and structural analysis of the drug transporter P-glycoprotein in Caenorhabditis elegans at a resolution of 3.4 angstroms is used to generate a homology model of the human protein and supports a picture in which P-glycoprotein uses the energy from ATP hydrolysis to expel lipophilic molecules from the inner leaflet of the cell membrane. The ABC (ATP-binding cassette) transporter P-glycoprotein confers multidrug resistance in cancer cells. In this manuscript, the authors biochemically and structurally characterize P-glycoprotein from Caenorhabditis elegans and use that information to generate a homology model for human P-glycoprotein. Their data suggest how P-glycoprotein uses the energy from ATP hydrolysis to expel lipophilic molecules from the inner leaflet of the membrane. P-glycoprotein (P-gp) is an ATP-binding cassette transporter that confers multidrug resistance in cancer cells1,2. It also affects the absorption, distribution and clearance of cancer-unrelated drugs and xenobiotics. For these reasons, the structure and function of P-gp have been studied extensively for decades3. Here we present biochemical characterization of P-gp from Caenorhabditis elegans and its crystal structure at a resolution of 3.4 angstroms. We find that the apparent affinities of P-gp for anticancer drugs actinomycin D and paclitaxel are approximately 4,000 and 100 times higher, respectively, in the membrane bilayer than in detergent. This affinity enhancement highlights the importance of membrane partitioning when a drug accesses the transporter in the membrane4. Furthermore, the transporter in the crystal structure opens its drug pathway at the level of the membrane’s inner leaflet. In the helices flanking the opening to the membrane, we observe extended loops that may mediate drug binding, function as hinges to gate the pathway or both. We also find that the interface between the transmembrane and nucleotide-binding domains, which couples ATP hydrolysis to transport, contains a ball-and-socket joint and salt bridges similar to the ATP-binding cassette importers5, suggesting that ATP-binding cassette exporters and importers may use similar mechanisms to achieve alternating access for transport. Finally, a model of human P-gp derived from the structure of C. elegans P-gp not only is compatible with decades of biochemical analysis6,7,8,9,10,11,12, but also helps to explain perplexing functional data regarding the Phe335Ala mutant13,14. These results increase our understanding of the structure and function of this important molecule.

392 citations


Journal ArticleDOI
14 Sep 2012-Science
TL;DR: This study establishes XL-MS as an integral part of hybrid structural biology approaches for the analysis of endogenous protein complexes by gaining distance restraints on a modular interaction network of protein complexes affinity-purified from human cells by applying an adaptedXL-MS protocol.
Abstract: The identification of proximate amino acids by chemical cross-linking and mass spectrometry (XL-MS) facilitates the structural analysis of homogeneous protein complexes. We gained distance restraints on a modular interaction network of protein complexes affinity-purified from human cells by applying an adapted XL-MS protocol. Systematic analysis of human protein phosphatase 2A (PP2A) complexes identified 176 interprotein and 570 intraprotein cross-links that link specific trimeric PP2A complexes to a multitude of adaptor proteins that control their cellular functions. Spatial restraints guided molecular modeling of the binding interface between immunoglobulin binding protein 1 (IGBP1) and PP2A and revealed the topology of TCP1 ring complex (TRiC) chaperonin interacting with the PP2A regulatory subunit 2ABG. This study establishes XL-MS as an integral part of hybrid structural biology approaches for the analysis of endogenous protein complexes.

385 citations


Journal ArticleDOI
TL;DR: Recent advances in HIV-1 structural biology are reviewed, focusing on the molecular mechanisms of viral replication and on the development of new therapeutics.
Abstract: Three-dimensional molecular structures can provide detailed information on biological mechanisms and, for cases in which the molecular function affects human health, can significantly aid in the development of therapeutic interventions. For almost 25 years, key components of the lentivirus HIV-1, including the envelope glycoproteins, the capsid and the replication enzymes reverse transcriptase, integrase and protease, have been scrutinized to near atomic-scale resolution. Moreover, structural analyses of the interactions between viral and host cell components have yielded key insights into the mechanisms of viral entry, chromosomal integration, transcription and egress from cells. Here, we review recent advances in HIV-1 structural biology, focusing on the molecular mechanisms of viral replication and on the development of new therapeutics.

362 citations


Journal ArticleDOI
TL;DR: It is shown that it is possible to obtain highly quantitative information about particularly important types of probability distributions, the populations of secondary structure elements (α-helix, β-strand, random coil, and polyproline II), by using the information provided by backbone chemical shifts.
Abstract: One of the major open challenges in structural biology is to achieve effective descriptions of disordered states of proteins. This problem is difficult because these states are conformationally highly heterogeneous and cannot be represented as single structures, and therefore it is necessary to characterize their conformational properties in terms of probability distributions. Here we show that it is possible to obtain highly quantitative information about particularly important types of probability distributions, the populations of secondary structure elements (α-helix, β-strand, random coil, and polyproline II), by using the information provided by backbone chemical shifts. The application of this approach to mammalian prions indicates that for these proteins a key role in molecular recognition is played by disordered regions characterized by highly conserved polyproline II populations. We also determine the secondary structure populations of a range of other disordered proteins that are medically relevant, including p53, α-synuclein, and the Aβ peptide, as well as an oligomeric form of αB-crystallin. Because chemical shifts are the nuclear magnetic resonance parameters that can be measured under the widest variety of conditions, our approach can be used to obtain detailed information about secondary structure populations for a vast range of different protein states.

333 citations


Journal ArticleDOI
26 Jan 2012-Nature
TL;DR: This work shows a direct and highly specific interaction of exclusively one sphingomyelin species, SM 18, with the TMD of the COPI machinery protein p24, and suggests a role of SM 18 in regulating the equilibrium between an inactive monomeric and an active oligomeric state of the p24 protein, which in turn regulates COPI-dependent transport.
Abstract: Functioning and processing of membrane proteins critically depend on the way their transmembrane segments are embedded in the membrane. Sphingolipids are structural components of membranes and can also act as intracellular second messengers. Not much is known of sphingolipids binding to transmembrane domains (TMDs) of proteins within the hydrophobic bilayer, and how this could affect protein function. Here we show a direct and highly specific interaction of exclusively one sphingomyelin species, SM 18, with the TMD of the COPI machinery protein p24 (ref. 2). Strikingly, the interaction depends on both the headgroup and the backbone of the sphingolipid, and on a signature sequence (VXXTLXXIY) within the TMD. Molecular dynamics simulations show a close interaction of SM 18 with the TMD. We suggest a role of SM 18 in regulating the equilibrium between an inactive monomeric and an active oligomeric state of the p24 protein, which in turn regulates COPI-dependent transport. Bioinformatic analyses predict that the signature sequence represents a conserved sphingolipid-binding cavity in a variety of mammalian membrane proteins. Thus, in addition to a function as second messengers, sphingolipids can act as cofactors to regulate the function of transmembrane proteins. Our discovery of an unprecedented specificity of interaction of a TMD with an individual sphingolipid species adds to our understanding of why biological membranes are assembled from such a large variety of different lipids.

324 citations


Journal ArticleDOI
TL;DR: Recent advances in the field of protein structural biology that have been made possible by exploiting the unique properties of lipid bicelles, in both solution and solid-state NMR spectroscopy, will be discussed.
Abstract: 1.1. Why Study Membranes and Membrane Proteins? Biological membranes and membrane proteins, responsible for numerous exciting biological processes, present one of the paramount challenges in biophysics today. Membranes are present in great number and variety in all organisms. They form the boundary between the inside and outside for any bacterium or cell, and they delimit the host of organelles that make up their inner subunits. Each biological membrane is made up of dozens of different types of lipids and sterols, and any particular type of membrane has a characteristic content of these different constituents. As a very basic example, we mention that prokaryotic membranes contain a notable component of negatively charged lipids but almost no cholesterol, while eukaryotic membranes are mostly zwitterionic but have a significant amount of cholesterol. Since the driving biophysical principles of membrane formation are very simple—they lie in the amphipathic properties of any lipid molecule—a single lipid type is sufficient to form membrane-like bilayers in an aqueous environment. Such model membranes are used extensively to study biophysical properties that are representative for most membrane systems. A particularly interesting effect is observed when detergent molecules are added to lipid bilayer samples: the detergents solubilize the bilayers, and in certain regimes so-called bilayered mixed micelles or “bicelles” are formed. In the simplest case, they can be described as microscopic disks where a bilayer patch is encircled by a “rim” of detergent molecules. Bicelles represent a new instance of lipid morphology and are extensively applicable to structural studies of lipid membranes and protein structure.1 Membranes delimit any cell and all of its compartments. They form natural borders for metabolic substances and signaling molecules. Membrane proteins are the porters and gatekeepers that make sure that only proper molecules or signals make it across the membrane. Since membrane proteins perform numerous key functions in cell metabolism and signaling, they contribute over 30% of the genes in typical eukaryotic genomes,2 and they form the targets for over 50% of drugs in use today.3 The number of elucidated structures of membrane proteins has grown exponentially after the first structure was published in 1985, thus equaling the rate at which structure determination of soluble proteins emerged early on.4 Still, the number of available high-resolution structures of membrane proteins is limited. There are Internet sites that keep track of newly published structures of membrane proteins. The crystallography-oriented Web site of Dr. Stephen White [http://blanco.biomol.uci.edu/mpstruc] has recently been joined by another site maintained by Dr. Dror Warschawski that is dedicated to structures of membrane proteins elucidated by nuclear magnetic resonance (NMR) spectroscopy [www.drorlist.com/nmr/MPNMR.html]. Another equally important site of Dr. Hartmut Michel [www.mpibp-frankfurt.mpg.de/michel/public/memprotstruct.html] with an emphasis on crystallization conditions is no longer updated, but states that access is still enabled. In this review article, we aim to give a general overview of lipid bicelles as employed in the study of protein structure. Recent advances in the field of protein structural biology that have been made possible by exploiting the unique properties of lipid bicelles, in both solution and solid-state NMR spectroscopy, will be discussed. During the last five years, review contributions have presented bicelles either within the far more general context of reconstitution media for solution NMR studies (see section 1.4) or have focused on macroscopically aligned bicelles as used for solid-state NMR studies.5,6 One very recent contribution has tackled the formidable task of reviewing all membrane mimetics employed in both solution and solid-state NMR studies.7 As mentioned above, we will limit the contents of this review article to applications of lipid bicelles, but will cover both the isotropic and the aligned bicelles as used in NMR studies. Some parts of this article can be viewed as an update on the review articles of Opella and Marassi,8 Marcotte and Auger,9 and Prosser et al.10 In addition, some of our own recent research involving bicelles is presented in detail.

296 citations


Journal ArticleDOI
18 Dec 2012-eLife
TL;DR: Ensembles of structures generated by time-averaged refinement revealed that, while most proteins display a well-ordered core, some proteins exhibit a ‘molten core’ likely supporting functionally important dynamics in ligand binding, enzyme activity and protomer assembly.
Abstract: It has been clear since the early days of structural biology in the late 1950s that proteins and other biomolecules are continually changing shape, and that these changes have an important influence on both the structure and function of the molecules. X-ray diffraction can provide detailed information about the structure of a protein, but only limited information about how its structure fluctuates over time. Detailed information about the dynamic behaviour of proteins is essential for a proper understanding of a variety of processes, including catalysis, ligand binding and protein–protein interactions, and could also prove useful in drug design. Currently most of the X-ray crystal structures in the Protein Data Bank are ‘snap-shots’ with limited or no information about protein dynamics. However, X-ray diffraction patterns are affected by the dynamics of the protein, and also by distortions of the crystal lattice, so three-dimensional (3D) models of proteins ought to take these phenomena into account. Molecular-dynamics (MD) computer simulations transform 3D structures into 4D ‘molecular movies’ by predicting the movement of individual atoms. Combining MD simulations with crystallographic data has the potential to produce more realistic ensemble models of proteins in which the atomic fluctuations are represented by multiple structures within the ensemble. Moreover, in addition to improved structural information, this process—which is called ensemble refinement—can provide dynamical information about the protein. Earlier attempts to do this ran into problems because the number of model parameters needed was greater than the number of observed data points. Burnley et al. now overcome this problem by modelling local molecular vibrations with MD simulations and, at the same time, using a course-grain model to describe global disorder of longer length scales. Ensemble refinement of high-resolution X-ray diffraction datasets for 20 different proteins from the Protein Data Bank produced a better fit to the data than single structures for all 20 proteins. Ensemble refinement also revealed that 3 of the 20 proteins had a ‘molten core’, rather than the well-ordered residues core found in most proteins: this is likely to be important in various biological functions including ligand binding, filament formation and enzymatic function. Burnley et al. also showed that a HIV enzyme underwent an order–disorder transition that is likely to influence how this enzyme works, and that similar transitions might influence the interactions between the small-molecule drug Imatinib (also known as Gleevec) and the enzymes it targets. Ensemble refinement could be applied to the majority of crystallography data currently being collected, or collected in the past, so further insights into the properties and interactions of a variety of proteins and other biomolecules can be expected.

246 citations


Journal ArticleDOI
TL;DR: It is shown how a widespread protein fold evolved to accommodate chemically diverse methyl acceptors and to catalyse disparate mechanisms suited to the physiochemical properties of the target substrates, suggesting that NPMTs may serve as starting points for generating new biocatalysts.

Journal ArticleDOI
TL;DR: The recent advances in homology modeling, particularly in detecting and aligning sequences with template structures, distant homologues, modeling of loops and side chains as well as detecting errors in a model contributed to consistent prediction of protein structure, which was not possible even several years ago.
Abstract: Major goal of structural biology involve formation of protein-ligand complexes; in which the protein molecules act energetically in the course of binding. Therefore, perceptive of protein-ligand interaction will be very important for structure based drug design. Lack of knowledge of 3D structures has hindered efforts to understand the binding specificities of ligands with protein. With increasing in modeling software and the growing number of known protein structures, homology modeling is rapidly becoming the method of choice for obtaining 3D coordinates of proteins. Homology modeling is a representation of the similarity of environmental residues at topologically corresponding positions in the reference proteins. In the absence of experimental data, model building on the basis of a known 3D structure of a homologous protein is at present the only reliable method to obtain the structural information. Knowledge of the 3D structures of proteins provides invaluable insights into the molecular basis of their functions. The recent advances in homology modeling, particularly in detecting and aligning sequences with template structures, distant homologues, modeling of loops and side chains as well as detecting errors in a model contributed to consistent prediction of protein structure, which was not possible even several years ago. This review focused on the features and a role of homology modeling in predicting protein structure and described current developments in this field with victorious applications at the different stages of the drug design and discovery.

Journal ArticleDOI
TL;DR: The relationship between modeling and needed high‐throughput experimental data as well as experimental examination of protein evolution using ancestral sequence resurrection and in vitro biochemistry are presented, towards an aim of ultimately generating better models for biological inference and prediction.
Abstract: The interface of protein structural biology, protein biophysics, molecular evolution, and molecular population genetics forms the foundations for a mechanistic understanding of many aspects of protein biochemistry. Current efforts in interdisciplinary protein modeling are in their infancy and the state-of-the art of such models is described. Beyond the relationship between amino acid substitution and static protein structure, protein function, and corresponding organismal fitness, other considerations are also discussed. More complex mutational processes such as insertion and deletion and domain rearrangements and even circular permutations should be evaluated. The role of intrinsically disordered proteins is still controversial, but may be increasingly important to consider. Protein geometry and protein dynamics as a deviation from static considerations of protein structure are also important. Protein expression level is known to be a major determinant of evolutionary rate and several considerations including selection at the mRNA level and the role of interaction specificity are discussed. Lastly, the relationship between modeling and needed high-throughput experimental data as well as experimental examination of protein evolution using ancestral sequence resurrection and in vitro biochemistry are presented, towards an aim of ultimately generating better models for biological inference and prediction.

Journal ArticleDOI
TL;DR: Recent structural information on individual T6SS components is summarized emphasizing the fact that T6 SSs are composite systems, adapting subunits from various origins, and the current information converges to the idea that T 6SSs are composed of two subassemblies, one resembling the contractile bacteriophage tail.
Abstract: Type VI secretion systems (T6SSs) are transenvelope complexes specialized in the transport of proteins or domains directly into target cells. These systems are versatile as they can target either eukaryotic host cells and therefore modulate the bacteria-host interaction and pathogenesis or bacterial cells and therefore facilitate access to a specific niche. These molecular machines comprise at least 13 proteins. Although recent years have witnessed advances in the role and function of these secretion systems, little is known about how these complexes assemble in the cell envelope. Interestingly, the current information converges to the idea that T6SSs are composed of two subassemblies, one resembling the contractile bacteriophage tail, whereas the other subunits are embedded in the inner and outer membranes and anchor the bacteriophage-like structure to the cell envelope. In this review, we summarize recent structural information on individual T6SS components emphasizing the fact that T6SSs are composite systems, adapting subunits from various origins.

Journal ArticleDOI
06 Dec 2012-Nature
TL;DR: This is the first riboswitch crystal structure detailing how the receptor and regulatory domains communicate in a ligand-dependent fashion to regulate mRNA expression, and it is shown that a composite cobalamin–RNA scaffold stabilizes an unusual long-range intramolecular kissing-loop interaction that controls mRNA expression.
Abstract: The crystal structures of two different cobalamin (vitamin B12)-binding riboswitches are determined; the structures reveal how cobalamin facilitates interdomain interactions to regulate gene expression Small metabolites and ligands can affect gene expression by binding to a structured part of an RNA known as a riboswitch Although the structures of many riboswitch receptor domains have been solved, the complete riboswitch structure with regulatory domain had not been determined Robert Batey and colleagues have now solved the structure of two different cobalamin (vitamin B12) riboswitches that include the downstream regulatory domain Ligand recognition occurs largely as a result of shape complementarity, rather than the more typical hydrogen bonding Structures of riboswitch receptor domains bound to their effector have shown how messenger RNAs recognize diverse small molecules, but mechanistic details linking the structures to the regulation of gene expression remain elusive1,2 To address this, here we solve crystal structures of two different classes of cobalamin (vitamin B12)-binding riboswitches that include the structural switch of the downstream regulatory domain These classes share a common cobalamin-binding core, but use distinct peripheral extensions to recognize different B12 derivatives In each case, recognition is accomplished through shape complementarity between the RNA and cobalamin, with relatively few hydrogen bonding interactions that typically govern RNA–small molecule recognition We show that a composite cobalamin–RNA scaffold stabilizes an unusual long-range intramolecular kissing-loop interaction that controls mRNA expression This is the first, to our knowledge, riboswitch crystal structure detailing how the receptor and regulatory domains communicate in a ligand-dependent fashion to regulate mRNA expression

Journal ArticleDOI
TL;DR: A computational approach is presented for the design of proteins that self-assemble in three dimensions to yield macroscopic crystals and has potential applications to the de novo design of nanostructured materials and to the modification of natural proteins to facilitate X-ray crystallographic analysis.
Abstract: Protein crystals have catalytic and materials applications and are central to efforts in structural biology and therapeutic development. Designing predetermined crystal structures can be subtle given the complexity of proteins and the noncovalent interactions that govern crystallization. De novo protein design provides an approach to engineer highly complex nanoscale molecular structures, and often the positions of atoms can be programmed with sub-Å precision. Herein, a computational approach is presented for the design of proteins that self-assemble in three dimensions to yield macroscopic crystals. A three-helix coiled-coil protein is designed de novo to form a polar, layered, three-dimensional crystal having the P6 space group, which has a “honeycomb-like” structure and hexameric channels that span the crystal. The approach involves: (i) creating an ensemble of crystalline structures consistent with the targeted symmetry; (ii) characterizing this ensemble to identify “designable” structures from minima in the sequence-structure energy landscape and designing sequences for these structures; (iii) experimentally characterizing candidate proteins. A 2.1 Å resolution X-ray crystal structure of one such designed protein exhibits sub-Å agreement [backbone root mean square deviation (rmsd)] with the computational model of the crystal. This approach to crystal design has potential applications to the de novo design of nanostructured materials and to the modification of natural proteins to facilitate X-ray crystallographic analysis.

Journal ArticleDOI
TL;DR: High intrinsic amyloid-forming capacity of S100A8/A9 proteins may lead to their amyloids depositions in numerous ailments characterized by their elevated expression patterns and have additional pathological significance requiring further thorough investigation.
Abstract: S100A8 and S100A9 are EF-hand Ca2+ binding proteins belonging to the S100 family They are abundant in cytosol of phagocytes and play critical roles in numerous cellular processes such as motility and danger signaling by interacting and modulating the activity of target proteins S100A8 and S100A9 expression levels increased in many types of cancer, neurodegenerative disorders, inflammatory and autoimmune diseases and they are implicated in the numerous disease pathologies The Ca2+ and Zn2+-binding properties of S100A8/A9 have a pivotal influence on their conformation and oligomerization state, including self-assembly into homo- and heterodimers, tetramers and larger oligomers Here we review how the unique chemical and conformational properties of individual proteins and their structural plasticity at the quaternary level account for S100A8/A9 functional diversity Additional functional diversification occurs via non-covalent assembly into oligomeric and fibrillar amyloid complexes discovered in the aging prostate and reproduced in vitro This process is also regulated by Ca2+and Zn2+-binding and effectively competes with the formation of the native complexes High intrinsic amyloid-forming capacity of S100A8/A9 proteins may lead to their amyloid depositions in numerous ailments characterized by their elevated expression patterns and have additional pathological significance requiring further thorough investigation

Journal ArticleDOI
TL;DR: This work presents the solid-state NMR structure of the transmembrane domain of the Yersinia enterocolitica adhesin A (YadA), and acquires information on the flexibility and mobility of parts of the structure, which presents new insights into the autotransport mechanism of YadA.
Abstract: Membrane proteins are largely underrepresented among available atomic-resolution structures. The use of detergents in protein purification procedures hinders the formation of well-ordered crystals for X-ray crystallography and leads to slower molecular tumbling, impeding the application of solution-state NMR. Solid-state magic-angle spinning NMR spectroscopy is an emerging method for membrane-protein structural biology that can overcome these technical problems. Here we present the solid-state NMR structure of the transmembrane domain of the Yersinia enterocolitica adhesin A (YadA). The sample was derived from crystallization trials that yielded only poorly diffracting microcrystals. We solved the structure using a single, uniformly (13)C- and (15)N-labeled sample. In addition, solid-state NMR allowed us to acquire information on the flexibility and mobility of parts of the structure, which, in combination with evolutionary conservation information, presents new insights into the autotransport mechanism of YadA.

Journal ArticleDOI
18 Oct 2012-Nature
TL;DR: The crystal structure of the transporter-binding protein complex BtuCD–BtuF trapped in an β-γ-imidoadenosine 5′-phosphate (AMP-PNP)-bound intermediate state is reported, suggesting an unexpected peristaltic transport mechanism that is distinct from those observed in other ABC transporters.
Abstract: The ATP-binding cassette (ABC) transporter BtuCD mediates the uptake of vitamin B12 across the inner membrane of Escherichia coli. Previous structures have shown the conformations of apo states, but the transport mechanism has remained unclear. Here we report the 3.5 A crystal structure of the transporter-binding protein complex BtuCD–BtuF (BtuCD–F) trapped in an β-γ-imidoadenosine 5′-phosphate (AMP-PNP)-bound intermediate state. Although the ABC domains (BtuD subunits) form the expected closed sandwich dimer, the membrane-spanning BtuC subunits adopt a new conformation, with the central translocation pathway sealed by a previously unrecognized cytoplasmic gate. A fully enclosed cavity is thus formed approximately halfway across the membrane. It is large enough to accommodate a vitamin B12 molecule, and radioligand trapping showed that liposome-reconstituted BtuCD–F indeed contains bound B12 in the presence of AMP-PNP. In combination with engineered disulphide crosslinking and functional assays, our data suggest an unexpected peristaltic transport mechanism that is distinct from those observed in other ABC transporters. The X-ray crystal structure of the transporter-binding protein complex BtuCD–F, involved in the uptake of vitamin B12 across the inner membrane of Escherichia coli, is determined in an ATP analogue-bound state; the membrane-spanning BtuC subunits adopt a previously unseen conformation in which the central translocation pathway is sealed by an additional gate, and membrane transport is seen to occur through an unexpected peristaltic transport mechanism, distinct from what has been observed for other ABC transporters. ABC (ATP-binding cassette) transporters are membrane proteins that carry out many physiological functions by coupling the hydrolysis of cellular ATP to the translocation of substrates across biological membranes. The uptake of vitamin B12 across the inner membrane of Escherichia coli is mediated by the ABC transporter BtuCD, but the mechanism involved is not fully understood. This Article reports the X-ray crystal structure of the transporter-binding protein complex BtuCD–F trapped in an AMP–PNP-bound state. The membrane-spanning BtuC subunits adopt a previously unseen conformation in which the central translocation pathway is sealed by a second cytoplasmic gate. Functional experiments suggest that membrane transport occurs by means of a peristaltic transport mechanism distinct from that observed for other ABC transporters.

Journal ArticleDOI
TL;DR: The increasing number of X‐ray structures of free, protein‐ and ribosome‐bound tRNA, reveal structural details accounting for the identity of the 22 tRNA families and for the multifunctionality of a given family, and the structural role of post‐transcriptional tRNA modifications is being deciphered.
Abstract: Transfer RNAs (tRNAs) are ancient molecules whose origin goes back to the beginning of life on Earth. Key partners in the ribosome-translation machinery, tRNAs read genetic information on messenger RNA and deliver codon specified amino acids attached to their distal 3'-extremity for peptide bond synthesis on the ribosome. In addition to this universal function, tRNAs participate in a wealth of other biological processes and undergo intricate maturation events. Our understanding of tRNA biology has been mainly phenomenological, but ongoing progress in structural biology is giving a robust physico-chemical basis that explains many facets of tRNA functions. Advanced sequence analysis of tRNA genes and their RNA transcripts have uncovered rules that underly tRNA 2D folding and 3D L-shaped architecture, as well as provided clues about their evolution. The increasing number of X-ray structures of free, protein- and ribosome-bound tRNA, reveal structural details accounting for the identity of the 22 tRNA families (one for each proteinogenic amino acid) and for the multifunctionality of a given family. Importantly, the structural role of post-transcriptional tRNA modifications is being deciphered. On the other hand, the plasticity of tRNA structure during function has been illustrated using a variety of technical approaches that allow dynamical insights. The large range of structural properties not only allows tRNAs to be the key actors of translation, but also sustain a diversity of unrelated functions from which only a few have already been pinpointed. Many surprises can still be expected.

Journal ArticleDOI
TL;DR: This study identifies combinations of RDCs and CSs that can be used to raise conformational degeneracies inherent to different data types, and applies these approaches to characterize the conformational behavior of two intrinsically disordered proteins, the K18 domain from Tau protein and N(TAIL) from measles virus nucleoprotein.
Abstract: Intrinsically disordered regions are predicted to exist in a significant fraction of proteins encoded in eukaryotic genomes. The high levels of conformational plasticity of this class of proteins endows them with unique capacities to act in functional modes not achievable by folded proteins, but also places their molecular characterization beyond the reach of classical structural biology. New techniques are therefore required to understand the relationship between primary sequence and biological function in this class of proteins. Although dependences of some NMR parameters such as chemical shifts (CSs) or residual dipolar couplings (RDCs) on structural propensity are known, so that sampling regimes are often inferred from experimental observation, there is currently no framework that allows for a statistical mapping of the available Ramachandran space of each amino acid in terms of conformational propensity. In this study we develop such an approach, combining highly efficient conformational sampling with ensemble selection to map the backbone conformational sampling of IDPs on a residue specific level. By systematically analyzing the ability of NMR data to map the conformational landscape of disordered proteins, we identify combinations of RDCs and CSs that can be used to raise conformational degeneracies inherent to different data types, and apply these approaches to characterize the conformational behavior of two intrinsically disordered proteins, the K18 domain from Tau protein and N(TAIL) from measles virus nucleoprotein. In both cases, we identify the enhanced populations of turn and helical regions in key regions of the proteins, as well as contiguous strands that show clear and enhanced polyproline II sampling.

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate resonance assignments based on high-sensitivity proton-detected three-dimensional experiments for samples of different physical states, including a fully-protonated small protein (GB1, 6 kDa), a deuterated microcrystalline protein (DsbA, 21 kDa) prepared in a lipid environment, and the extended core of a fibrillar protein (α-synuclein, 14 kDa).
Abstract: Solid-state NMR has emerged as an important tool for structural biology and chemistry, capable of solving atomic-resolution structures for proteins in membrane-bound and aggregated states. Proton detection methods have been recently realized under fast magic-angle spinning conditions, providing large sensitivity enhancements for efficient examination of uniformly labeled proteins. The first and often most challenging step of protein structure determination by NMR is the site-specific resonance assignment. Here we demonstrate resonance assignments based on high-sensitivity proton-detected three-dimensional experiments for samples of different physical states, including a fully-protonated small protein (GB1, 6 kDa), a deuterated microcrystalline protein (DsbA, 21 kDa), a membrane protein (DsbB, 20 kDa) prepared in a lipid environment, and the extended core of a fibrillar protein (α-synuclein, 14 kDa). In our implementation of these experiments, including CONH, CO(CA)NH, CANH, CA(CO)NH, CBCANH, and CBCA(CO)NH, dipolar-based polarization transfer methods have been chosen for optimal efficiency for relatively high protonation levels (full protonation or 100 % amide proton), fast magic-angle spinning conditions (40 kHz) and moderate proton decoupling power levels. Each H–N pair correlates exclusively to either intra- or inter-residue carbons, but not both, to maximize spectral resolution. Experiment time can be reduced by at least a factor of 10 by using proton detection in comparison to carbon detection. These high-sensitivity experiments are especially important for membrane proteins, which often have rather low expression yield. Proton-detection based experiments are expected to play an important role in accelerating protein structure elucidation by solid-state NMR with the improved sensitivity and resolution.

Journal ArticleDOI
04 Oct 2012-Nature
TL;DR: A comprehensive structural model for how DEAD-box proteins recognize and unwind RNA duplexes is provided and affords a new perspective on how the evolutionarily related cores of other RNA and DNA helicases diverged to use different mechanisms.
Abstract: DEAD-box proteins are the largest family of nucleic acid helicases, and are crucial to RNA metabolism throughout all domains of life. They contain a conserved 'helicase core' of two RecA-like domains (domains (D)1 and D2), which uses ATP to catalyse the unwinding of short RNA duplexes by non-processive, local strand separation. This mode of action differs from that of translocating helicases and allows DEAD-box proteins to remodel large RNAs and RNA-protein complexes without globally disrupting RNA structure. However, the structural basis for this distinctive mode of RNA unwinding remains unclear. Here, structural, biochemical and genetic analyses of the yeast DEAD-box protein Mss116p indicate that the helicase core domains have modular functions that enable a novel mechanism for RNA-duplex recognition and unwinding. By investigating D1 and D2 individually and together, we find that D1 acts as an ATP-binding domain and D2 functions as an RNA-duplex recognition domain. D2 contains a nucleic-acid-binding pocket that is formed by conserved DEAD-box protein sequence motifs and accommodates A-form but not B-form duplexes, providing a basis for RNA substrate specificity. Upon a conformational change in which the two core domains join to form a 'closed state' with an ATPase active site, conserved motifs in D1 promote the unwinding of duplex substrates bound to D2 by excluding one RNA strand and bending the other. Our results provide a comprehensive structural model for how DEAD-box proteins recognize and unwind RNA duplexes. This model explains key features of DEAD-box protein function and affords a new perspective on how the evolutionarily related cores of other RNA and DNA helicases diverged to use different mechanisms.

Journal ArticleDOI
TL;DR: This work focuses on four key areas of nucleic acid modeling: molecular representation, potential energy function, degrees of freedom and sampling algorithm, and how appropriate choices in each can effectively combine to aid interpretation of experimental data and facilitate prediction ofucleic acid structure.

Journal ArticleDOI
TL;DR: This review aims to provide a clear and comprehensive primer on these mechanisms to a broad community of researchers, bringing together the common themes, and highlighting specific differences.
Abstract: During mitosis, human cells exhibit a peak of protein phosphorylation that alters the behaviour of a significant proportion of proteins, driving a dramatic transformation in the cell's shape, intracellular structures and biochemistry. These mitotic phosphorylation events are catalysed by several families of protein kinases, including Auroras, Cdks, Plks, Neks, Bubs, Haspin and Mps1/TTK. The catalytic activities of these kinases are activated by phosphorylation and through protein–protein interactions. In this review, we summarize the current state of knowledge of the structural basis of mitotic kinase activation mechanisms. This review aims to provide a clear and comprehensive primer on these mechanisms to a broad community of researchers, bringing together the common themes, and highlighting specific differences. Along the way, we have uncovered some features of these proteins that have previously gone unreported, and identified unexplored questions for future work. The dysregulation of mitotic kinases is associated with proliferative disorders such as cancer, and structural biology will continue to play a critical role in the development of chemical probes used to interrogate disease biology and applied to the treatment of patients.

Journal ArticleDOI
TL;DR: A model of the TCR ectodomain complex including its connecting peptides suggests how force generated during T‐cell immune surveillance and at the immunological synapse results in dynamic TCR quaternary change involving its heterodimeric components.
Abstract: Self versus non-self discrimination is at the core of T-lymphocyte recognition. To this end, αβ T-cell receptors (TCRs) ligate 'foreign' peptides bound to major histocompatibility complex (MHC) class I or class II molecules (pMHC) arrayed on the surface of antigen-presenting cells (APCs). Since the discovery of TCRs approximately 30 years ago, considerable structural and functional data have detailed the molecular basis of their extraordinary ligand specificity and sensitivity in mediating adaptive T-cell immunity. This review focuses on the structural biology of the Fab-like TCRαβ clonotypic heterodimer and its unique features in conjunction with those of the associated CD3eγ and CD3eδ heterodimeric molecules, which, along with CD3ζζ homodimer, comprise the TCR complex in a stoichiometry of 1:1:1:1. The basis of optimized TCRαβ docking geometry on the pMHC linked to TCR mechanotransduction and required for T-cell signaling as well as CD4 and CD8 co-receptor function is detailed. A model of the TCR ectodomain complex including its connecting peptides suggests how force generated during T-cell immune surveillance and at the immunological synapse results in dynamic TCR quaternary change involving its heterodimeric components. Potential insights from the structural biology relevant to immunity and immunosuppression are revealed.

Journal ArticleDOI
TL;DR: The existence of multiple ligand-dependent partial activation states as well as dimerization of GPCRs result in a 'microprocessor-like' action of these receptors rather than an 'on-off' switch as was commonly believed only a decade ago.
Abstract: The years 2000 and 2007 witnessed milestones in current understanding of G protein-coupled receptor (GPCR) structural biology. In 2000 the first GPCR, bovine rhodopsin, was crystallized and the structure was solved, while in 2007 the structure of β(2)-adrenergic receptor, the first GPCR with diffusible ligands, was determined owing to advances in microcrystallization and an insertion of the fast-folding lysozyme into the receptor. In parallel with those crystallographic studies, the biological and biochemical characterization of GPCRs has advanced considerably because those receptors are molecular targets for many of currently used drugs. Therefore, the mechanisms of activation and signal transduction to the cell interior deduced from known GPCRs structures are of the highest importance for drug discovery. These proteins are the most diversified membrane receptors encoded by hundreds of genes in our genome. They participate in processes responsible for vision, smell, taste and neuronal transmission in response to photons or binding of ions, hormones, peptides, chemokines and other factors. Although the GPCRs share a common seven-transmembrane α-helical bundle structure their binding sites can accommodate thousands of different ligands. The ligands, including agonists, antagonists or inverse agonists change the structure of the receptor. With bound agonists they can form a complex with a suitable G protein, be phosphorylated by kinases or bind arrestin. The discovered signaling cascades invoked by arrestin independently of G proteins makes the GPCR activating scheme more complex such that a ligand acting as an antagonist for G protein signaling can also act as an agonist in arrestin-dependent signaling. Additionally, the existence of multiple ligand-dependent partial activation states as well as dimerization of GPCRs result in a 'microprocessor-like' action of these receptors rather than an 'on-off' switch as was commonly believed only a decade ago.

Journal ArticleDOI
TL;DR: Exactly how well the native membrane needs to be modeled to achieve a native membrane protein structure is explored here, where the structure of the tetrameric M2 conductance domain (M2CD; residues 22–62; PDB #2L0J) that has been structurally characterized in synthetic lipid bilayers is validated.
Abstract: Membrane protein structure and function, especially for small membrane proteins, can be highly sensitive to the membrane mimetic environment used for structural characterization, as exemplified by the M2 protein from influenza A virus that has been characterized in liquid crystalline lipid bilayers, detergent micelles and in detergent based crystals.[3–8] Various transmembrane (TM) helical tilt angles, different drug binding sites and amphipathic helix interactions, as well as a lack of consensus on the sidechain geometry for the functionally critical residues is apparent from this set of structures. Many of these structural differences can be explained based on the influence of the protein's environment. Hydrophobic thickness influences the helical tilt; detergent penetration into the helical bundle and crystal contacts influence the packing and hence tilt of the helices, while the highly curved surface of micelles destabilize the interactions of amphipathic helices with what would be the bilayer interface.[9] These structural perturbations can influence functional properties such as the binding of the antiviral drug to the protein and our understanding of the proton channel functional mechanism. Exactly how well the native membrane needs to be modeled to achieve a native membrane protein structure is explored here, where we aim to validate the structure of the tetrameric M2 conductance domain (M2CD; residues 22–62; PDB #2L0J) that has been structurally characterized in synthetic lipid bilayers. We have set out to do this by observing the full length protein in synthetic bilayers, as well as in native E. coli membranes. For the first time we report on structural insights from the full length M2 (M2FL) protein using magic angle spinning solid state NMR (ssNMR) and we present spectra of the protein as it is inserted into the E. coli membranes by the cellular apparatus without ever being exposed to a detergent environment. These results validate the earlier structural results obtained from the M2CD observed in a liquid crystalline bilayer envionment.

Journal ArticleDOI
TL;DR: The crystal structure of the C-terminal domain of Thermoanaerobacter pseudethanolicus VirB4 is presented, which is strikingly similar to that of another T4S ATPase, VirD4, a protein that shares only 12% sequence identity with VirB3, who is observed bound to the side of the complex where it is ideally placed to play its known regulatory role in substrate transfer.
Abstract: Type IV secretion (T4S) systems mediate the transfer of proteins and DNA across the cell envelope of bacteria. These systems play important roles in bacterial pathogenesis and in horizontal transfer of antibiotic resistance. The VirB4 ATPase of the T4S system is essential for both the assembly of the system and substrate transfer. In this article, we present the crystal structure of the C-terminal domain of Thermoanaerobacter pseudethanolicus VirB4. This structure is strikingly similar to that of another T4S ATPase, VirD4, a protein that shares only 12% sequence identity with VirB4. The VirB4 domain purifies as a monomer, but the full-length protein is observed in a monomer-dimer equilibrium, even in the presence of nucleotides and DNAs. We also report the negative stain electron microscopy structure of the core complex of the T4S system of the Escherichia coli pKM101 plasmid, with VirB4 bound. In this structure, VirB4 is also monomeric and bound through its N-terminal domain to the core’s VirB9 protein. Remarkably, VirB4 is observed bound to the side of the complex where it is ideally placed to play its known regulatory role in substrate transfer.

Journal ArticleDOI
TL;DR: A brief chronicle of Heteronuclear multidimensional NMR spectroscopy assisted with a stable isotope labeling technology studies on IUPs carried out over the past two decades is presented along with a discussion on the functional significance of PreSMos in Iups.
Abstract: Intrinsically unfolded proteins (IUPs) do not obey the golden rule of structural biology, 3D structure = function, as they manifest their inherent functions without resorting to three-dimensional structures. Absence of a compact globular topology in these proteins strongly implies that their ligand recognition processes should involve factors other than spatially well-defined binding pockets. Heteronuclear multidimensional (HetMulD) NMR spectroscopy assisted with a stable isotope labeling technology is a powerful tool for quantitatively investigating detailed structural features in IUPs. In particular, it allows us to delineate the presence and locations of pre-structured motifs (PreSMos) on a per-residue basis. PreSMos are the transient local structural elements that presage target-bound conformations and act as specificity determinants for IUP recognition by target proteins. Here, we present a brief chronicle of HetMulD NMR studies on IUPs carried out over the past two decades along with a discussion on the functional significance of PreSMos in IUPs.