scispace - formally typeset
Search or ask a question

Showing papers on "Structural biology published in 2014"


Book ChapterDOI
01 Jan 2014
TL;DR: This Sprenger Briefs volume is dedicated to IDPs and IDPRs and an attempt is made to compress a massive amount of knowledge and into a digest that aims to be of use to those wishing a fast entry into this promising field of structural biology.
Abstract: Nothing is solid about proteins. Governing rules and established laws are constantly broken. As an example, the last decade and a half have witnessed the fall of one of the major paradigms in structural biology. Contrarily to the more than a century-old belief that the unique function of a protein is determined by its unique structure, which, in its turn, is defined by the unique amino acid sequence, many biologically active proteins lack stable tertiary and/or secondary structure either entirely or at their significant parts. Such intrinsically disordered proteins (IDPs) and hybrid proteins containing ordered domains and functional IDP regions (IDPRs) are highly abundant in nature, and many of them are associated with various human diseases. Such disordered proteins and regions are very different from ordered and well-structured proteins and domains at a variety of levels and possess well-recognizable biases in their amino acid compositions and amino acid sequences. A characteristic feature of these proteins is their exceptional structural heterogeneity, where different parts of a given polypeptide chain can be ordered (or disordered) to different degrees. As a result, a typical IDP/IDPR contains a multitude of potentially foldable, partially foldable, differently foldable or not foldable structural segments. This distribution of conformers is constantly changing in time, where a given segment of a protein molecule has different structures at different time points. The distribution is also constantly changing in response to changes in the environment. This mosaic structural organization is crucial for their functions and many IDPs are engaged in biological functions that rely on high conformational flexibility and that are not accessible to proteins with unique and fixed structures. As a result, the functional repertoire of IDPs complements that of ordered proteins, with IDPs/IDPRs being often involved in regulation, signaling and control. This Sprenger Briefs volume is dedicated to IDPs and IDPRs and an attempt is made to compress a massive amount of knowledge and into a digest that aims to be of use to those wishing a fast entry into this promising field of structural biology.

624 citations


Journal ArticleDOI
Dong Deng1, Chao Xu1, Pengcheng Sun1, Jianping Wu1, Chuangye Yan1, Mingxu Hu1, Nieng Yan1 
05 Jun 2014-Nature
TL;DR: Structural comparison of the uniporter GLUT1 with its bacterial homologue XylE, a proton-coupled xylose symporter, allows examination of the transport mechanisms of both passive facilitators and active transporters.
Abstract: The glucose transporter GLUT1 catalyses facilitative diffusion of glucose into erythrocytes and is responsible for glucose supply to the brain and other organs. Dysfunctional mutations may lead to GLUT1 deficiency syndrome, whereas overexpression of GLUT1 is a prognostic indicator for cancer. Despite decades of investigation, the structure of GLUT1 remains unknown. Here we report the crystal structure of human GLUT1 at 3.2 A resolution. The full-length protein, which has a canonical major facilitator superfamily fold, is captured in an inward-open conformation. This structure allows accurate mapping and potential mechanistic interpretation of disease-associated mutations in GLUT1. Structure-based analysis of these mutations provides an insight into the alternating access mechanism of GLUT1 and other members of the sugar porter subfamily. Structural comparison of the uniporter GLUT1 with its bacterial homologue XylE, a proton-coupled xylose symporter, allows examination of the transport mechanisms of both passive facilitators and active transporters. The structure of human GLUT1 in an inward-open conformation is reported; access to the structure of the human protein, instead of just a bacterial homologue, made it possible to map (inactivating) mutations associated with GLUT1 deficiency syndrome onto the structure. GLUT1 is a membrane protein that is responsible for the uptake of glucose into erythrocytes and other cells. The structure of a proton-coupled xylose symporter that is a bacterial homologue of GLUT1 has been reported previously and here Nieng Yan and colleagues report the structure of human GLUT1 in an inward-open conformation. Having access to the structure of the human protein, the authors were able to map inactivating mutations associated with GLUT1 deficiency syndrome — also known as De Vivo syndrome — onto their structure. Because elevated expression levels of GLUT1 have been observed in several cancer types, access to this structure may facilitate the development of new anticancer agents.

572 citations


Journal ArticleDOI
TL;DR: In this paper, the plasmid Eric Gouaux (pEG) BacMam, a vector optimized for use in screening assays, as well as for efficient production of baculovirus and robust expression of the target protein.
Abstract: Structural, biochemical and biophysical studies of eukaryotic membrane proteins are often hampered by difficulties in overexpression of the candidate molecule. Baculovirus transduction of mammalian cells (BacMam), although a powerful method to heterologously express membrane proteins, can be cumbersome for screening and expression of multiple constructs. We therefore developed plasmid Eric Gouaux (pEG) BacMam, a vector optimized for use in screening assays, as well as for efficient production of baculovirus and robust expression of the target protein. In this protocol, we show how to use small-scale transient transfection and fluorescence-detection size-exclusion chromatography (FSEC) experiments using a GFP-His8-tagged candidate protein to screen for monodispersity and expression level. Once promising candidates are identified, we describe how to generate baculovirus, transduce HEK293S GnTI(-) (N-acetylglucosaminyltransferase I-negative) cells in suspension culture and overexpress the candidate protein. We have used these methods to prepare pure samples of chicken acid-sensing ion channel 1a (cASIC1) and Caenorhabditis elegans glutamate-gated chloride channel (GluCl) for X-ray crystallography, demonstrating how to rapidly and efficiently screen hundreds of constructs and accomplish large-scale expression in 4-6 weeks.

469 citations


Journal ArticleDOI
16 Oct 2014-eLife
TL;DR: Biochemical reconstitution on supported lipid bilayers of protein clusters containing the adhesion receptor Nephrin and its cytoplasmic partners, Nck and N-WASP is reported, suggesting that clustering of regulatory factors could promote local actin assembly at membranes.
Abstract: The membrane that surrounds a cell is made up of a mixture of lipid molecules and proteins. Membrane proteins perform a wide range of roles, including transmitting signals into, and out of, cells and helping neighboring cells to stick together. To perform these tasks, these proteins commonly need to bind to other molecules—collectively known as ligands—that are found either inside or outside the cell. Membrane proteins are able to move around within the membrane, and in many systems, ligand binding causes the membrane proteins to cluster together. Although this clustering has been seen in many different systems, no general principles that describe how clustering occurs had been found. Now, Banjade and Rosen have constructed an artificial cell membrane to investigate the clustering of a membrane protein called Nephrin, which is essential for kidneys to function correctly. When it is activated, Nephrin interacts with protein ligands called Nck and N-WASP that are found inside cells and helps filaments of a protein called actin to form. These filaments perform a number of roles including enabling cells to adhere to each other and to move. In Banjade and Rosen's artificial system, when a critical concentration of ligands was exceeded, clusters of Nephrin, Nck and N-WASP suddenly formed. This suggests that the clusters form through a physical process known as ‘phase separation’. Banjade and Rosen found that this critical concentration depends on how strongly the proteins interact and the number of sites they possess to bind each other. Within the clusters, the three proteins formed large polymer chains. The clusters were mobile and, over time, small clusters coalesced into larger clusters. Even though the clusters persisted for hours, individual proteins did not stay in a given cluster for long and instead continuously exchanged back-and-forth between the cluster and its surroundings. When actin and another protein complex that interacts with N-WASP were added to the artificial membrane system, actin filaments began to form at the protein clusters. Banjade and Rosen suggest that such clusters act as ‘signaling zones’ that coordinate the construction of the actin filaments. Regions that are also found in many other signaling proteins mediate the interactions between Nephrin, Nck and N-WASP. Banjade and Rosen therefore suggest that phase separation and protein polymer formation could explain how many different types of membrane proteins form clusters.

387 citations


Journal ArticleDOI
TL;DR: The Dynameomics database is used, a repository of high‐quality molecular dynamics simulations of 807 proteins representative of diverse protein folds, to investigate the relationship between lysine–lysine distances in experimental starting structures and in simulation ensembles and concludes that for DSS/BS3, a distance constraint of 26–30 Å between Cα atoms is appropriate.
Abstract: Integrative structural biology attempts to model the structures of protein complexes that are challenging or intractable by classical structural methods (due to size, dynamics, or heterogeneity) by combining computational structural modeling with data from experimental methods. One such experimental method is chemical crosslinking mass spectrometry (XL-MS), in which protein complexes are crosslinked and characterized using liquid chromatography-mass spectrometry to pinpoint specific amino acid residues in close structural proximity. The commonly used lysine-reactive N-hydroxysuccinimide ester reagents disuccinimidylsuberate (DSS) and bis(sulfosuccinimidyl)suberate (BS3) have a linker arm that is 11.4 A long when fully extended, allowing Cα (alpha carbon of protein backbone) atoms of crosslinked lysine residues to be up to ∼24 A apart. However, XL-MS studies on proteins of known structure frequently report crosslinks that exceed this distance. Typically, a tolerance of ∼3 A is added to the theoretical maximum to account for this observation, with limited justification for the chosen value. We used the Dynameomics database, a repository of high-quality molecular dynamics simulations of 807 proteins representative of diverse protein folds, to investigate the relationship between lysine–lysine distances in experimental starting structures and in simulation ensembles. We conclude that for DSS/BS3, a distance constraint of 26–30 A between Cα atoms is appropriate. This analysis provides a theoretical basis for the widespread practice of adding a tolerance to the crosslinker length when comparing XL-MS results to structures or in modeling. We also discuss the comparison of XL-MS results to MD simulations and known structures as a means to test and validate experimental XL-MS methods.

241 citations


Journal ArticleDOI
TL;DR: The development of more powerful and adequate docking approaches is facilitated by rapidly expanding information and data resources, growing computational capabilities, and a deeper understanding of the fundamental principles of protein interactions.

224 citations


Journal ArticleDOI
TL;DR: This review draws attention to the latest methods and strategies for the production of suitable crystals for membrane protein structure determination, and highlights the impact that third-generation synchrotron radiation has made in the field.

222 citations


Journal ArticleDOI
TL;DR: It is proposed that FSHR exists as a trimer and a two-step monomeric receptor activation mechanism consistent with the observed trimeric crystal form is presented.

169 citations


Journal ArticleDOI
TL;DR: The most important factors affecting the production of recombinant proteins in a soluble form are reviewed and information about how the statistical design experiments can increase protein yield and purity as well as find conditions for crystal growth is provided.

132 citations


Journal ArticleDOI
TL;DR: The structural and biochemical data identify Cmr4 as the conserved endoribonuclease of the Cmr complex and reveal how the superhelical backbone of the complex is defined by the polymerizing principles of CMR4 and Cmr5 and how it is capped at the extremities by proteins of similar folds.

127 citations


Journal ArticleDOI
TL;DR: It is demonstrated that gas-phase unfolding can be used to determine the number of autonomously folded domains within monomeric proteins within a group of sixteen proteins ranging from 8-78 kDa.
Abstract: The three-dimensional structures adopted by proteins are predicated by their many biological functions Mass spectrometry has played a rapidly expanding role in protein structure discovery, enabling the generation of models for both proteins and their higher-order assemblies While important coursed-grained insights have been generated, relatively few examples exist where mass spectrometry has been successfully applied to the characterization of protein tertiary structure Here, we demonstrate that gas-phase unfolding can be used to determine the number of autonomously folded domains within monomeric proteins Our ion mobility-mass spectrometry data highlight a strong, positive correlation between the number of protein unfolding transitions observed in the gas phase and the number of known domains within a group of sixteen proteins ranging from 8–78 kDa This correlation and its potential uses for structural biology is discussed

Journal ArticleDOI
TL;DR: This work has shown that SID can be a complementary gas-phase tool providing useful information for studying quaternary structures of noncovalent protein complexes, with emphasis on the more recent work on the combination of ion mobility (IM) with SID.
Abstract: ConspectusThe quaternary structures of proteins are both important and of interest to chemists, because many proteins exist as complexes in vivo, and probing these structures allows us to better understand their biological functions. Conventional structural biology methods such as X-ray crystallography and nuclear magnetic resonance provide high-resolution information on the structures of protein complexes and are the gold standards in the field. However, other emerging biophysical methods that only provide low-resolution data (e.g. stoichiometry and subunit connectivity) on the structures of the protein complexes are also becoming more important to scientists. Mass spectrometry is one of these approaches that provide lower than atomic structural resolution, but the approach is higher throughput and provides not only better mass information than other techniques but also stoichiometry and topology.Fragile noncovalent interactions within the protein complexes can be preserved in the gas phase of MS under g...

Journal ArticleDOI
TL;DR: This review examines the major recombinant expression systems for eukaryotic membrane proteins and compares their relative advantages and disadvantages and attempted to summarize the recent technical strategies in the advancement of eukARYotic membrane protein purification and crystallization.
Abstract: Eukaryotic membrane proteins, many of which are key players in various biological processes, constitute more than half of the drug targets and represent important candidates for structural studies. In contrast to their physiological significance, only very limited number of eukaryotic membrane protein structures have been obtained due to the technical challenges in the generation of recombinant proteins. In this review, we examine the major recombinant expression systems for eukaryotic membrane proteins and compare their relative advantages and disadvantages. We also attempted to summarize the recent technical strategies in the advancement of eukaryotic membrane protein purification and crystallization.

Journal ArticleDOI
31 Dec 2014-eLife
TL;DR: A model for a dynamic effector complex comprising Hfq, small RNA, and the cognate mRNA target is proposed and proposed, which involves a host of distributed interactions mediated by the natively unstructured termini of HfQ.
Abstract: A crucial step in the production of proteins is the translation of messenger RNA molecules. Other RNA molecules called small RNAs are also involved in this process: these small RNAs bind to the messenger RNA molecules to either increase or decrease the production of proteins. Bacteria and other microorganisms use small RNA molecules to help them respond to stress conditions and to changes in their environment, such as fluctuations in temperature or the availability of nutrients. The ability to rapidly adapt to these changes enables bacteria to withstand harmful conditions and to make efficient use of resources available to them. Many small RNA molecules use a protein called Hfq to help them interact with their target messenger RNAs. In some cases this protein protects the small RNA molecules when they are not bound to their targets. Hfq also helps the small RNA to bind to the messenger RNA, and then recruits other enzymes that eventually degrade the complex formed by the different RNA molecules. Previous research has shown that six Hfq subunits combine to form a ring-shaped structure and has also provided some clues about the way in which Hfq can recognise a short stretch of a small RNA molecule, but the precise details of the interaction between them are not fully understood. Now Dimastrogiovanni et al. have used a technique called X-ray crystallography to visualize the interaction between Hfq and a small RNA molecule called RydC. These experiments reveal that a particular region of RydC adopts a structure known as a pseudoknot and that this structure is critical for the interactions between the RydC molecules and the Hfq ring. Dimastrogiovanni et al. find that one RydC molecule interacts with one Hfq ring, and they identify the contact points between the RydC molecule and different regions of the Hfq ring. Based on this information, Dimastrogiovanni et al. propose a model for how the RydC:Hfq complex is likely to interact with a messenger RNA molecule. The next step will be to test this model in experiments.

Journal ArticleDOI
TL;DR: With structural information about more proteins and higher-order complexes becoming available, the authors are coming closer to obtaining a structural blueprint of the polyadenylation machinery that explains both how this complex functions and how it is regulated and connected to other cellular processes.
Abstract: Processing of mRNA precursors (pre-mRNAs) by polyadenylation is an essential step in gene expression. Polyadenylation consists of two steps, cleavage and poly(A) synthesis, and requires multiple cis elements in the pre-mRNA and a megadalton protein complex bearing the two essential enzymatic activities. While genetic and biochemical studies remain the major approaches in characterizing these factors, structural biology has emerged during the past decade to help understand the molecular assembly and mechanistic details of the process. With structural information about more proteins and higher-order complexes becoming available, we are coming closer to obtaining a structural blueprint of the polyadenylation machinery that explains both how this complex functions and how it is regulated and connected to other cellular processes.

Journal ArticleDOI
TL;DR: All-atom replica-averaged metadynamics simulations with NMR chemical shift restraints are used to determine an ensemble of structures representing an acid-denatured state of the 86-residue protein ACBP, characterizing the role of the unfolded state in determining the folding process.
Abstract: The characterization of denatured states of proteins is challenging because the lack of permanent structure in these states makes it difficult to apply to them standard methods of structural biology. In this work we use all-atom replica-averaged metadynamics (RAM) simulations with NMR chemical shift restraints to determine an ensemble of structures representing an acid-denatured state of the 86-residue protein ACBP. This approach has enabled us to reach convergence in the free energy landscape calculations, obtaining an ensemble of structures in relatively accurate agreement with independent experimental data used for validation. By observing at atomistic resolution the transient formation of native and non-native structures in this acid-denatured state of ACBP, we rationalize the effects of single-point mutations on the folding rate, stability, and transition-state structures of this protein, thus characterizing the role of the unfolded state in determining the folding process.

Journal ArticleDOI
TL;DR: It is found that charge reduction stabilizes the oligomeric state and enhances the stability of lipid-bound complexes, which is significant since maintaining native-like membrane proteins enables ligand binding to be assessed from a range of detergents that retain solubility while protecting the overall fold.
Abstract: The study of intact soluble protein assemblies by means of mass spectrometry is providing invaluable contributions to structural biology and biochemistry. A recent breakthrough has enabled similar study of membrane protein complexes, following their release from detergent micelles in the gas phase. Careful optimization of mass spectrometry conditions, particularly with respect to energy regimes, is essential for maintaining compact folded states as detergent is removed. However, many of the saccharide detergents widely employed in structural biology can cause unfolding of membrane proteins in the gas phase. Here, we investigate the potential of charge reduction by introducing three membrane protein complexes from saccharide detergents and show how reducing their overall charge enables generation of compact states, as evidenced by ion mobility mass spectrometry. We find that charge reduction stabilizes the oligomeric state and enhances the stability of lipid-bound complexes. This finding is significant since maintaining native-like membrane proteins enables ligand binding to be assessed from a range of detergents that retain solubility while protecting the overall fold.

Journal ArticleDOI
TL;DR: PRMT inhibitors can compete with cofactor, substrate, or bind at allosteric sites found in the active or inactive states.
Abstract: Protein arginine methyltransferases (PRMTs), an emerging target class in drug discovery, can methylate histones and other substrates, and can be divided into three subgroups, based on the methylation pattern of the reaction product (monomethylation, symmetrical or asymmetrical dimethylation). Here, we review the growing body of structural information characterizing this protein family, including structures in complex with substrate-competitive and allosteric inhibitors. We outline structural differences between type I, II and III enzymes and propose a model underlying class-specificity. We analyze the structural plasticity and diversity of the substrate, cofactor and allosteric binding sites, and propose that the conformational dynamics of PRMTs can be exploited towards the discovery of allosteric inhibitors that would antagonize conformationally active states.

Journal ArticleDOI
TL;DR: Recent progress in structural and biochemical characterization of Roco proteins is highlighted and its implication for the understanding of the complex regulatory mechanism of LRRK2 is discussed.
Abstract: Human leucine rich repeat kinase 2 (LRRK2) belongs to the Roco family of proteins, which are characterized by the presence of a Ras-like G-domain (Roc), a C-terminal of Roc domain (COR), and a kinase domain. Mutations in LRRK2 have been found to be thus far the most frequent cause of late-onset Parkinson's disease (PD). Several of the pathogenic mutations in LRRK2 result in decreased GTPase activity and enhanced kinase activity, suggesting a possible PD-related gain of abnormal function. Important progress in the structural understanding of LRRK2 has come from our work with related Roco proteins from lower organisms. Atomic structures of Roco proteins from prokaryotes revealed that Roco proteins belong to the GAD class of molecular switches (G proteins activated by nucleotide dependent dimerization). As in LRRK2, PD-analogous mutations in Roco proteins from bacteria decrease the GTPase reaction. Studies with Roco proteins from the model organism Dictyostelium discoideum revealed that PD mutants have different effects and most importantly they explained the G2019S-related increased LRRK2 kinase activity. Furthermore, the structure of Dictyostelium Roco4 kinase in complex with the LRRK2 inhibitor H1152 showed that Roco4 and other Roco family proteins can be important for the optimization of the current, and identification of new, LRRK2 kinase inhibitors. In this review we highlight the recent progress in structural and biochemical characterization of Roco proteins and discuss its implication for the understanding of the complex regulatory mechanism of LRRK2.

Journal ArticleDOI
05 Dec 2014-eLife
TL;DR: Simulation of the kinetics indicates that availability of competent monomers within the contact zone between virus and target membrane makes trimerization a bottleneck in hemifusion, which is a sign of rate-limiting in membrane fusion.
Abstract: Flaviviruses are a group of viruses that cause serious diseases in humans, including yellow fever, West Nile fever and dengue fever. Like all viruses, flaviviruses protect their genetic material with a protein shell and, like many other viruses, that shell also has a lipid membrane. Flaviruses use one of their surface membrane proteins, known as ‘envelope protein’ or simply ‘E’, to bind to the surface of host cells. Once the virus has attached to the host cell membrane, it becomes engulfed within a bubble-like structure called an endosome, which also has a surrounding membrane. The interior of an endosome is acidic. Under these conditions the E protein undergoes a series of changes that bring the two membranes into close contact, so that the membrane of the virus can fuse with the membrane of the endosome. This membrane fusion allows the genome of the virus to escape the endosome and hijack the cell to make new copies of the virus. The E proteins on a mature flavivirus particle are found in pairs, but previous work showed that these proteins must work together in groups of three (called ‘trimers’) for the viral and endosomal membranes to fuse. Chao et al. have now asked: what are the rate-limiting steps that lead to the formation of trimers? And how many trimers are necessary to cause the membranes to fuse? Chao et al. have investigated these questions using virus-like particles containing the E protein of West Nile Virus. They used techniques that can track individual particles, which their laboratory had previously used to investigate the influenza virus, to model changes in the E protein before, during and after membrane fusion. Chao et al. then made mutant versions of the envelope protein and used virus-like particles containing them to test the model. The data that Chao et al. obtained and computer simulations they carried out suggest that exposure to acidic conditions encourages the pairs of E proteins to separate and extend towards the endosome membrane. Individual E proteins then group together into trimers, and at least two trimers are needed to exert enough force to allow the membranes to fuse. The experimental design used by Chao et al. will now allow them to study the action of molecules that inhibit membrane fusion by West Nile Virus and other viruses.

Journal ArticleDOI
TL;DR: A simple and accessible method for expressing and purifying milligram quantities of protein by performing transient transfections of suspension grown HEK (Human Embryonic Kidney) 293F cells is described.
Abstract: The expression and purification of large amounts of recombinant protein complexes is an essential requirement for structural biology studies. For over two decades, prokaryotic expression systems such as E. coli have dominated the scientific literature over costly and less efficient eukaryotic cell lines. Despite the clear advantage in terms of yields and costs of expressing recombinant proteins in bacteria, the absence of specific co-factors, chaperones and post-translational modifications may cause loss of function, mis-folding and can disrupt protein-protein interactions of certain eukaryotic multi-subunit complexes, surface receptors and secreted proteins. The use of mammalian cell expression systems can address these drawbacks since they provide a eukaryotic expression environment. However, low protein yields and high costs of such methods have until recently limited their use for structural biology. Here we describe a simple and accessible method for expressing and purifying milligram quantities of protein by performing transient transfections of suspension grown HEK (Human Embryonic Kidney) 293F cells.

Journal ArticleDOI
TL;DR: This review discusses the challenges, successes, and novel insights into the physical basis underlying membrane protein folds in lipid and detergent micelle environments.
Abstract: Fundamental to the central goals of structural biology is knowledge of the energetics of molecular interactions. Because membrane proteins reside in a free energy minimum dictated by their sequences, their lipid environment, and water, one must understand the energetics of membrane protein folding to generate physical descriptions of cellular processes. Several technical obstacles have recently been overcome to enable folding measurements for membrane proteins in lipid and detergent micelle environments, and several new folding free energies have been published within the past ten years. This review discusses the challenges, successes, and novel insights into the physical basis underlying membrane protein folds.

Journal ArticleDOI
TL;DR: Fic enzymes play crucial roles in eukaryotic signal transduction, drug tolerance, bacterial pathogenicity, and the bacterial stress response, and they retain a conserved active site and reaction chemistry.

Journal ArticleDOI
10 Nov 2014-eLife
TL;DR: The structures of ANK repeats in complex with an inhibitory segment from the C-terminal regulatory domain and with a sodium channel Nav1.2 peptide are reported, showing that the extended, extremely conserved inner groove spanning the entire ANK repeat solenoid contains multiple target binding sites capable of accommodating target proteins with very diverse sequences via combinatorial usage of these sites.
Abstract: Proteins are made up of smaller building blocks called amino acids that are linked to form long chains that then fold into specific shapes. Each protein gets its unique identity from the number and order of the amino acids that it contains, but different proteins can contain similar arrangements of amino acids. These similar sequences, known as motifs, are usually short and typically mark the sites within proteins that bind to other molecules or proteins. A single protein can contain many motifs, including multiple repeats of the same motif. One common motif is called the ankyrin (or ANK) repeat, which is found in 100s of proteins in different species, including bacteria and humans. Ankyrin proteins perform a range of important functions, such as connecting proteins in the cell surface membrane to a scaffold-like structure underneath the membrane. Proteins containing ankyrin repeats are known to interact with a diverse range of other proteins (or targets) that are different in size and shape. The 24 repeats found in human ankyrin proteins appear to have essentially remained unchanged for the last 500 million years. As such, it remains unclear how the conserved ankyrin repeats can bind to such a wide variety of protein targets. Now, Wang, Wei et al. have uncovered the three-dimensional structure of ankyrin repeats from a human ankyrin protein while it was bound either to a regulatory fragment from another ankyrin protein or to a region of a target protein (which transports sodium ions in and out of cells). The ankyrin repeats were shown to form an extended ‘left-handed helix’: a structure that has also been seen in other proteins with different repeating motifs. Wang, Wei et al. found that the ankyrin protein fragment bound to the inner surface of the part of the helix formed by the first 14 ankyrin repeats. The target protein region also bound to the helix's inner surface. Wang, Wei et al. show that this surface contains many binding sites that can be used, in different combinations, to allow ankyrins to interact with diverse proteins. Other proteins with long sequences of repeats are widespread in nature, but uncovering the structures of these proteins is technically challenging. Wang, Wei et al.'s findings might reveal new insights into the functions of many of such proteins in a wide range of living species. Furthermore, the new structures could help explain why specific mutations in the genes that encode ankyrins (or their binding targets) can cause various diseases in humans—including heart diseases and psychiatric disorders.

Journal ArticleDOI
TL;DR: Modern pulse EPR methods have the ability to examine conformational heterogeneity, resolve discrete protein states, and identify the substates in exchange, and this feature when combined with the use of methods that can shift the free energy of conformational substates allows one to identify regions of proteins that are in dynamic exchange.
Abstract: Protein structures are not static but sample different conformations over a range of amplitudes and time scales. These fluctuations may involve relatively small changes in bond angles or quite large rearrangements in secondary structure and tertiary fold. The equilibrium between discrete structural substates on the microsecond to millisecond time scale is sometimes termed conformational exchange. Protein dynamics and conformational exchange are believed to provide the basis for many important activities, such as protein-protein and protein-ligand interactions, enzymatic activity and protein allostery; however, for many proteins, the dynamics and conformational exchange that lead to function are poorly defined. Spectroscopic methods, such as NMR, are among the most important methods to explore protein dynamics and conformational exchange; however, they are difficult to implement in some systems and with some types of exchange events. Site-directed spin labeling (SDSL) is an EPR based approach that is particularly well-suited to high molecular-weight systems such as membrane proteins. Because of the relatively fast time scale for EPR spectroscopy, it is an excellent method to examine exchange. Conformations that are in exchange are captured as distinct populations in the EPR spectrum, and this feature when combined with the use of methods that can shift the free energy of conformational substates allows one to identify regions of proteins that are in dynamic exchange. In addition, modern pulse EPR methods have the ability to examine conformational heterogeneity, resolve discrete protein states, and identify the substates in exchange. Protein crystallography has provided high-resolution models for a number of membrane proteins; but because of conformational exchange, these models do not always reflect the structures that are present when the protein is in a native bilayer environment. In the case of the Escherichia coli vitamin B12 transporter, BtuB, the energy coupling segment of this protein undergoes a substrate-dependent unfolding, which acts to couple this outer-membrane protein to the inner-membrane protein TonB. EPR spectroscopy demonstrates that the energy coupling segment is in equilibrium between ordered and disordered states, and that substrate binding shifts this equilibrium to favor an unfolded state. However, in crystal structures of BtuB, this segment is resolved and folded within the protein, and neither the presence of this equilibrium nor the substrate-induced change is revealed. This is a result of the solute environment and the crystal lattice, both of which act to stabilize one conformational substate of the transporter. Using SDSL, it can be shown that conformational exchange is present in other regions of BtuB and in other members of this transporter family. Conformational exchange has also been examined in systems such as the plasma membrane SNARE protein, syntaxin 1A, where dynamics are controlled by regulatory proteins such as munc18. Regulating the microsecond to millisecond time scale dynamics in the neuronal SNAREs is likely to be a key feature that regulates assembly of the SNAREs and neurotransmitter release.

Journal ArticleDOI
TL;DR: It is suggested that the protonation state of Asp(2.50) may act as a functionally important microswitch in the activation of the β2AR and other class A receptors.
Abstract: Achieving a molecular-level understanding of G-protein-coupled receptor (GPCR) activation has been a long-standing goal in biology and could be important for the development of novel drugs. Recent breakthroughs in structural biology have led to the determination of high-resolution crystal structures for the β2 adrenergic receptor (β2AR) in inactive and active states, which provided an unprecedented opportunity to understand receptor signaling at the atomic level. We used molecular dynamics (MD) simulations to explore the potential roles of ionizable residues in β2AR activation. One such residue is the strongly conserved Asp792.50, which is buried in a transmembrane cavity and becomes dehydrated upon β2AR activation. MD free energy calculations based on β2AR crystal structures suggested an increase in the population of the protonated state of Asp792.50 upon activation, which may contribute to the experimentally observed pH-dependent activation of this receptor. Analysis of MD simulations (in total >100 μs)...

Book ChapterDOI
TL;DR: The outlook of the "holy grail" of understanding in atomic detail the diverse functions of TRP channels is summarized by summarizing the outlook from electron microscopy, X-ray crystallography, and nuclear magnetic resonance of the resulting insights into TRP channel function.
Abstract: Membrane proteins remain challenging targets for structural biologists, despite recent technical developments regarding sample preparation and structure determination. We review recent progress towards a structural understanding of TRP channels and the techniques used to that end. We discuss available low-resolution structures from electron microscopy (EM), X-ray crystallography, and nuclear magnetic resonance (NMR) and review the resulting insights into TRP channel function for various subfamily members. The recent high-resolution structure of TRPV1 is discussed in more detail in Chapter 11. We also consider the opportunities and challenges of using the accumulating structural information on TRPs and homologous proteins for deducing full-length structures of different TRP channel subfamilies, such as building homology models. Finally, we close by summarizing the outlook of the "holy grail" of understanding in atomic detail the diverse functions of TRP channels.

Journal ArticleDOI
TL;DR: Examples of the use of solid-state nuclear magnetic resonance spectroscopy to correlate structure and function in membrane proteins with diverse biological roles, including signaling, transport, and enzymatic reactions are presented.

Book ChapterDOI
TL;DR: A novel experimental approach called "DNA curtains" is described that can be used to complement and extend more traditional techniques by providing real-time information about protein-nucleic acid interactions at the level of single molecules.
Abstract: Interactions between proteins and nucleic acids are at the molecular foundations of most key biological processes, including DNA replication, genome maintenance, the regulation of gene expression, and chromosome segregation. A complete understanding of these types of biological processes requires tackling questions with a range of different techniques, such as genetics, cell biology, molecular biology, biochemistry, and structural biology. Here, we describe a novel experimental approach called "DNA curtains" that can be used to complement and extend these more traditional techniques by providing real-time information about protein-nucleic acid interactions at the level of single molecules. We describe general features of the DNA curtain technology and its application to the study of protein-nucleic acid interactions in vitro. We also discuss some future developments that will help address crucial challenges to the field of single-molecule biology.

Book ChapterDOI
TL;DR: Detailed molecular understanding of BH3-only protein action has aided the development of novel chemical entities that initiate cell death by mimicking the properties of B H3- only proteins.
Abstract: B-cell lymphoma-2 (Bcl-2) homology-3 (BH3)-only proteins are considered members of the Bcl-2 family, though they bear little sequence or structural identity with the multi-BH motif prosurvival or proapoptotic Bcl-2 proteins like Bcl-2 or Bax. They are better considered a separate phylogenetic entity. In combination, results from biophysical, biochemical, cell biological, and animal studies in conjunction with structural investigations have elucidated the function and mechanism of action of these proteins. Either by antagonizing prosurvival Bcl-2 proteins or directly activating proapoptotic Bcl-2 proteins (Bax or Bak) they initiate apoptosis. BH3-only proteins are intrinsically disordered and fold and bind into a groove provided by their cognate receptor Bcl-2 family proteins. Our detailed molecular understanding of BH3-only protein action has aided the development of novel chemical entities that initiate cell death by mimicking the properties of BH3-only proteins.