scispace - formally typeset
Search or ask a question

Showing papers on "Structural biology published in 2019"


Journal ArticleDOI
TL;DR: A technique to ‘lift out’ samples of interest from high-pressure-frozen specimens expands applications of cryo-electron tomography to multicellular organisms and tissue, extending the range of applications for in situ structural biology.
Abstract: Cryo-focused ion beam milling of frozen-hydrated cells has recently provided unprecedented insights into the inner space of cells. In combination with cryo-electron tomography, this method allows access to native structures deep inside cells, enabling structural studies of macromolecules in situ. However, this approach has been mainly limited to individual cells that can be completely vitrified by plunge-freezing. Here, we describe a preparation method that is based on the targeted extraction of material from high-pressure-frozen bulk specimens with a cryo-gripper tool. This lift-out technique enables cryo-electron tomography to be performed on multicellular organisms and tissue, extending the range of applications for in situ structural biology. We demonstrate the potential of the lift-out technique with a structural study of cytosolic 80S ribosomes in a Caenorhabditis elegans worm. The preparation quality allowed for subtomogram analysis with sufficient resolution to distinguish individual ribosomal translocation states and revealed significant cell-to-cell variation in ribosome structure.

146 citations


Journal ArticleDOI
17 Oct 2019-Cell
TL;DR: Cryoelectron microscopy structures of full-length rat P2X7 receptor in apo and ATP-bound states reveal how one cytoplasmic element, the C-cys anchor, prevents desensitization by anchoring the pore-lining helix to the membrane with palmitoyl groups.

139 citations


Journal ArticleDOI
06 Feb 2019-eLife
TL;DR: The architecture of the membrane region shows how the simple bacterial ATP synthase is able to perform the same core functions as the equivalent, but more complicated, mitochondrial complex, and reveals the path of transmembrane proton translocation.
Abstract: ATP synthases produce ATP from ADP and inorganic phosphate with energy from a transmembrane proton motive force. Bacterial ATP synthases have been studied extensively because they are the simplest form of the enzyme and because of the relative ease of genetic manipulation of these complexes. We expressed the Bacillus PS3 ATP synthase in Eschericia coli, purified it, and imaged it by cryo-EM, allowing us to build atomic models of the complex in three rotational states. The position of subunit e shows how it is able to inhibit ATP hydrolysis while allowing ATP synthesis. The architecture of the membrane region shows how the simple bacterial ATP synthase is able to perform the same core functions as the equivalent, but more complicated, mitochondrial complex. The structures reveal the path of transmembrane proton translocation and provide a model for understanding decades of biochemical analysis interrogating the roles of specific residues in the enzyme.

126 citations


Journal ArticleDOI
TL;DR: Recent developments in cross-linking and mass spectrometry technologies that are providing large-scale or systems-level interactome data with successful applications to isolated organelles, cell lysates, virus particles, intact bacterial and mammalian cultured cells and tissue samples are discussed.

109 citations


Journal ArticleDOI
TL;DR: Data support the contention that there is not a simple linear barcode that defines the specificity of G protein coupling and thus how a G protein couples to a GPCR cannot currently be determined from simply analysing amino acid sequences.

104 citations


Journal ArticleDOI
TL;DR: Analysis of recent X-ray crystallography data on eukaryotic glycosyltransferases in complex with acceptor and donor substrates reveals structural features that govern substrate specificity and Glycosylation site selection.
Abstract: Glycans linked to proteins and lipids play key roles in biology; thus, accurate replication of cellular glycans is crucial for maintaining function following cell division. The fact that glycans are not copied from genomic templates suggests that fidelity is provided by the catalytic templates of glycosyltransferases that accurately add sugars to specific locations on growing oligosaccharides. To form new glycosidic bonds, glycosyltransferases bind acceptor substrates and orient a specific hydroxyl group, frequently one of many, for attack of the donor sugar anomeric carbon. Several recent crystal structures of glycosyltransferases with bound acceptor substrates reveal that these enzymes have common core structures that function as scaffolds upon which variable loops are inserted to confer substrate specificity and correctly orient the nucleophilic hydroxyl group. The varied approaches for acceptor binding site assembly suggest an ongoing evolution of these loop regions provides templates for assembly of the diverse glycan structures observed in biology. Analysis of recent X-ray crystallography data on eukaryotic glycosyltransferases in complex with acceptor and donor substrates reveals structural features that govern substrate specificity and glycosylation site selection.

104 citations


Journal ArticleDOI
11 Jul 2019-Cell
TL;DR: This work zooming into single tagged genes using nanoscopy techniques, including an active target-locking, ultra-sensitive system that enables single-molecule detection in addressable sub-diffraction volumes, within crowded intracellular environments, sets the stage for single-Molecule studies of complex molecular processes in live cells.

103 citations


Journal ArticleDOI
12 Mar 2019-eLife
TL;DR: Cryo-EM structures of human TPC2 (HsTPC2), a phosphatidylinositol 3,5-bisphosphate-activated, Na+ selective channel, in the ligand-bound and apo states provide insights into the mechanism of PI(3,5)P2-regulated gating of T PC2, which is distinct from that of TPC1.
Abstract: Mammalian two-pore channels (TPCs) regulate the physiological functions of the endolysosome. Here we present cryo-EM structures of human TPC2 (HsTPC2), a phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2)-activated, Na+ selective channel, in the ligand-bound and apo states. The apo structure captures the closed conformation, while the ligand-bound form features the channel in both open and closed conformations. Combined with functional analysis, these structures provide insights into the mechanism of PI(3,5)P2-regulated gating of TPC2, which is distinct from that of TPC1. Specifically, the endolysosome-specific PI(3,5)P2 binds at the first 6-TM and activates the channel - independently of the membrane potential - by inducing a structural change at the pore-lining inner helix (IS6), which forms a continuous helix in the open state but breaks into two segments at Gly317 in the closed state. Additionally, structural comparison to the voltage-dependent TPC1 structure allowed us to identify Ile551 as being responsible for the loss of voltage dependence in TPC2.

92 citations


Journal ArticleDOI
20 Feb 2019-eLife
TL;DR: The cryo-EM data of murine TMEM16F in absence and presence of Ca2+ define the ligand-free closed conformation of the protein and the structure of a Ca2-bound intermediate, which demonstrates the relationship between ion conduction and lipid scrambling.
Abstract: The lipid scramblase TMEM16F initiates blood coagulation by catalyzing the exposure of phosphatidylserine in platelets. The protein is part of a family of membrane proteins, which encompasses calcium-activated channels for ions and lipids. Here, we reveal features of murine TMEM16F (mTMEM16F) that underlie its function as a lipid scramblase and an ion channel. The cryo-EM data of mTMEM16F in absence and presence of Ca2+ define the ligand-free closed conformation of the protein and the structure of a Ca2+-bound intermediate. Both conformations resemble their counterparts of the scrambling-incompetent anion channel mTMEM16A, yet with distinct differences in the region of ion and lipid permeation. In conjunction with functional data, we demonstrate the relationship between ion conduction and lipid scrambling. Although activated by a common mechanism, both functions appear to be mediated by alternate protein conformations that are at equilibrium in the ligand-bound state.

90 citations


Journal ArticleDOI
24 Jul 2019-eLife
TL;DR: The characterization of structure-guided mutants illuminates the properties of the ion transport path, including a selective anion binding site located in the center of a mobile module within the transmembrane domain.
Abstract: The epithelial anion transporter SLC26A9 contributes to airway surface hydration and gastric acid production. Colocalizing with CFTR, SLC26A9 has been proposed as a target for the treatment of cystic fibrosis. To provide molecular details of its transport mechanism, we present cryo-EM structures and a functional characterization of murine Slc26a9. These structures define the general architecture of eukaryotic SLC26 family members and reveal an unusual mode of oligomerization which relies predominantly on the cytosolic STAS domain. Our data illustrates conformational transitions of Slc26a9, supporting a rapid alternate-access mechanism which mediates uncoupled chloride transport with negligible bicarbonate or sulfate permeability. The characterization of structure-guided mutants illuminates the properties of the ion transport path, including a selective anion binding site located in the center of a mobile module within the transmembrane domain. This study thus provides a structural foundation for the understanding of the entire SLC26 family and potentially facilitates their therapeutic exploitation.

90 citations


Journal ArticleDOI
TL;DR: It is demonstrated that dimerization domains and their positions in the interacting subunits determine the co-translational assembly pathway (simultaneous or sequential).
Abstract: Cells dedicate significant energy to build proteins often organized in multiprotein assemblies with tightly regulated stoichiometries. As genes encoding subunits assembling in a multisubunit complex are dispersed in the genome of eukaryotes, it is unclear how these protein complexes assemble. Here, we show that mammalian nuclear transcription complexes (TFIID, TREX-2 and SAGA) composed of a large number of subunits, but lacking precise architectural details are built co-translationally. We demonstrate that dimerization domains and their positions in the interacting subunits determine the co-translational assembly pathway (simultaneous or sequential). The lack of co-translational interaction can lead to degradation of the partner protein. Thus, protein synthesis and complex assembly are linked in building mammalian multisubunit complexes, suggesting that co-translational assembly is a general principle in mammalian cells to avoid non-specific interactions and protein aggregation. These findings will also advance structural biology by defining endogenous co-translational building blocks in the architecture of multisubunit complexes. Genes encoding protein complex subunits are often dispersed in the genome of eukaryotes, raising the question how these protein complexes assemble. Here, the authors provide evidence that mammalian nuclear transcription complexes are formed co-translationally to ensure specific and functional interactions.

Journal ArticleDOI
TL;DR: A general description of galectins most important structural features, with a special focus on the molecular determinants of their carbohydrate-recognition ability, and a series of recent advances in the development of engineeredgalectins and galectin inhibitors are reviewed.
Abstract: Galectins (formerly known as "S-type lectins") are a subfamily of soluble proteins that typically bind β-galactoside carbohydrates with high specificity. They are present in many forms of life, from nematodes and fungi to animals, where they perform a wide range of functions. Particularly in humans, different types of galectins have been described differing not only in their tissue expression but also in their cellular location, oligomerization, fold architecture and carbohydrate-binding affinity. This distinct yet sometimes overlapping distributions and physicochemical attributes make them responsible for a wide variety of both intra- and extracellular functions, including tremendous importance in immunity and disease. In this review, we aim to provide a general description of galectins most important structural features, with a special focus on the molecular determinants of their carbohydrate-recognition ability. For that purpose, we structurally compare the human galectins, in light of recent mutagenesis studies and novel X-ray structures. We also offer a detailed description on how to use the solvent structure surrounding the protein as a tool to get better predictions of galectin-carbohydrate complexes, with a potential application to the rational design of glycomimetic inhibitory compounds. Finally, using Gal-1 and Gal-3 as paramount examples, we review a series of recent advances in the development of engineered galectins and galectin inhibitors, aiming to dissect the structure-activity relationship through the description of their interaction at the molecular level.

Journal ArticleDOI
27 Sep 2019-iScience
TL;DR: Solving the crystal structure of the heptad repeat (HR) region of PHB2 at 1.7-Å resolution shows that it assembles into a dimeric, antiparallel coiled-coil with a unique negatively charged area essential for the PHB interactome in mitochondria.

Journal ArticleDOI
TL;DR: A tailored solid‐state NMR spectroscopic approach that allows studying protein structure inside human cells at atomic level under high‐sensitivity dynamic nuclear polarization (DNP) conditions is developed and demonstrated using ubiquitin (Ub), which is critically involved in cellular functioning.
Abstract: Elucidating at atomic level how proteins interact and are chemically modified in cells represents a leading frontier in structural biology. We have developed a tailored solid-state NMR spectroscopic approach that allows studying protein structure inside human cells at atomic level under high-sensitivity dynamic nuclear polarization (DNP) conditions. We demonstrate the method using ubiquitin (Ub), which is critically involved in cellular functioning. Our results pave the way for structural studies of larger proteins or protein complexes inside human cells, which have remained elusive to in-cell solution-state NMR spectroscopy due to molecular size limitations.

Journal ArticleDOI
TL;DR: In this paper, the authors describe new molecular insights into pre-mRNA recognition, cleavage, and polyadenylation in the 3'-UTR of eukaryotic mRNAs.

Journal ArticleDOI
TL;DR: NucleicNet can serve to provide quantitative fitness of RNA sequences for given binding pockets or to predict potential binding pockets and binding RNAs for previously unknown RNA binding proteins on a diverse set of challenging RNA-binding proteins.
Abstract: Protein-RNA interaction plays important roles in post-transcriptional regulation. However, the task of predicting these interactions given a protein structure is difficult. Here we show that, by leveraging a deep learning model NucleicNet, attributes such as binding preference of RNA backbone constituents and different bases can be predicted from local physicochemical characteristics of protein structure surface. On a diverse set of challenging RNA-binding proteins, including Fem-3-binding-factor 2, Argonaute 2 and Ribonuclease III, NucleicNet can accurately recover interaction modes discovered by structural biology experiments. Furthermore, we show that, without seeing any in vitro or in vivo assay data, NucleicNet can still achieve consistency with experiments, including RNAcompete, Immunoprecipitation Assay, and siRNA Knockdown Benchmark. NucleicNet can thus serve to provide quantitative fitness of RNA sequences for given binding pockets or to predict potential binding pockets and binding RNAs for previously unknown RNA binding proteins.

Journal ArticleDOI
TL;DR: It is demonstrated that dissociation of protein complexes by surface collisions, at the lower end of the typical surface-induced dissociation (SID) collision energy range, consistently cleaves the weakest protein:protein interfaces, producing products that are reflective of the known structure.
Abstract: To fulfill their biological functions, proteins must interact with their specific binding partners and often function as large assemblies composed of multiple proteins or proteins plus other biomolecules. Structural characterization of these complexes, including identification of all binding partners, their relative binding affinities, and complex topology, is integral for understanding function. Understanding how proteins assemble and how subunits in a complex interact is a cornerstone of structural biology. Here we report a native mass spectrometry (MS)-based method to characterize subunit interactions in globular protein complexes. We demonstrate that dissociation of protein complexes by surface collisions, at the lower end of the typical surface-induced dissociation (SID) collision energy range, consistently cleaves the weakest protein:protein interfaces, producing products that are reflective of the known structure. We present here combined results for multiple complexes as a training set, two validation cases, and four computational models. We show that SID appearance energies can be predicted from structures via a computationally derived expression containing three terms (number of residues in a given interface, unsatisfied hydrogen bonds, and a rigidity factor).

Journal ArticleDOI
30 Dec 2019-eLife
TL;DR: Cryo-electron microscopy structure of an ESX-3 system, purified using an epitope tag inserted with recombineering into the chromosome of the model organism Mycobacterium smegmatis, reveals a stacked architecture that extends above and below the inner membrane of the bacterium.
Abstract: The ESX (or Type VII) secretion systems are protein export systems in mycobacteria and many Gram-positive bacteria that mediate a broad range of functions including virulence, conjugation, and metabolic regulation. These systems translocate folded dimers of WXG100-superfamily protein substrates across the cytoplasmic membrane. We report the cryo-electron microscopy structure of an ESX-3 system, purified using an epitope tag inserted with recombineering into the chromosome of the model organism Mycobacterium smegmatis. The structure reveals a stacked architecture that extends above and below the inner membrane of the bacterium. The ESX-3 protomer complex is assembled from a single copy of the EccB3, EccC3, and EccE3 and two copies of the EccD3 protein. In the structure, the protomers form a stable dimer that is consistent with assembly into a larger oligomer. The ESX-3 structure provides a framework for further study of these important bacterial transporters.

Journal ArticleDOI
TL;DR: This protocol describes how to synthesize a cleavable cross-linker and use it to map protein structures and interactions within intact cells and animal tissues.
Abstract: This protocol describes a workflow for utilizing large-scale cross-linking with mass spectrometry (XL-MS) to make systems-level structural biology measurements in complex biological samples, including cells, isolated organelles, and tissue samples. XL-MS is a structural biology technique that provides information on the molecular structure of proteins and protein complexes using chemical probes that report the proximity of probe-reactive amino acids within proteins, typically lysine residues. Information gained through XL-MS studies is often complementary to more traditional methods, such as X-ray crystallography, nuclear magnetic resonance, and cryo-electron microscopy. The use of MS-cleavable cross-linkers, including protein interaction reporter (PIR) technologies, enables XL-MS studies on protein structures and interactions in extremely complex biological samples, including intact living cells. PIR cross-linkers are designed to contain chemical bonds at specific locations within the cross-linker molecule that can be selectively cleaved by collision-induced dissociation or UV light. When broken, these bonds release the intact peptides that were cross-linked, as well as a reporter ion. Conservation of mass dictates that the sum of the two released peptide masses and the reporter mass equals the measured precursor mass. This relationship is used to identify cross-linked peptide pairs. Release of the individual peptides permits accurate measurement of their masses and independent amino acid sequence determination by tandem MS, allowing the use of standard proteomics search engines such as Comet for peptide sequence assignment, greatly simplifying data analysis of cross-linked peptide pairs. Search results are processed with XLinkProphet for validation and can be uploaded into XlinkDB for interaction network and structural analysis. Cross-linking with mass spectrometry (XL-MS) can reveal the topology of protein complexes. This protocol describes how to synthesize a cleavable cross-linker and use it to map protein structures and interactions within intact cells and animal tissues.

Journal ArticleDOI
28 Jun 2019-eLife
TL;DR: The cryo-EM structure and analysis provide new structural basis for the molecular events of the GPCR signaling pathway and find a small set of common anchoring points that are G protein-subtype specific.
Abstract: One of the largest membrane protein families in eukaryotes are G protein-coupled receptors (GPCRs). GPCRs modulate cell physiology by activating diverse intracellular transducers, prominently heterotrimeric G proteins. The recent surge in structural data has expanded our understanding of GPCR-mediated signal transduction. However, many aspects, including the existence of transient interactions, remain elusive. We present the cryo-EM structure of the light-sensitive GPCR rhodopsin in complex with heterotrimeric Gi. Our density map reveals the receptor C-terminal tail bound to the Gβ subunit of the G protein, providing a structural foundation for the role of the C-terminal tail in GPCR signaling, and of Gβ as scaffold for recruiting Gα subunits and G protein-receptor kinases. By comparing available complexes, we found a small set of common anchoring points that are G protein-subtype specific. Taken together, our structure and analysis provide new structural basis for the molecular events of the GPCR signaling pathway.

ComponentDOI
09 Dec 2019-eLife
TL;DR: Cryo-EM structures of Slo1 in complex with the auxiliary protein β4 show that identical gating conformations occur in the absence and presence of β4, implying that β4 serves to modulate the relative stabilities of 'pre-existing' conformations rather than creating new ones.
Abstract: Slo1 is a Ca2+- and voltage-activated K+ channel that underlies skeletal and smooth muscle contraction, audition, hormone secretion and neurotransmitter release. In mammals, Slo1 is regulated by auxiliary proteins that confer tissue-specific gating and pharmacological properties. This study presents cryo-EM structures of Slo1 in complex with the auxiliary protein, β4. Four β4, each containing two transmembrane helices, encircle Slo1, contacting it through helical interactions inside the membrane. On the extracellular side, β4 forms a tetrameric crown over the pore. Structures with high and low Ca2+ concentrations show that identical gating conformations occur in the absence and presence of β4, implying that β4 serves to modulate the relative stabilities of 'pre-existing' conformations rather than creating new ones. The effects of β4 on scorpion toxin inhibition kinetics are explained by the crown, which constrains access but does not prevent binding.

Journal ArticleDOI
TL;DR: Current approaches and technological developments in the determination of membrane protein structures by solution NMR are discussed and recent structural and mechanistic insights gained with this technique are highlighted.

Journal ArticleDOI
TL;DR: How Cryo-EM has revolutionized structural investigations of membrane proteins is shown and it is shown that the presence of intrinsically disordered or flexible regions in a target protein represents one of the major limitations of this promising technique.
Abstract: Traditionally, X-ray crystallography and NMR spectroscopy represent major workhorses of structural biologists, with the lion share of protein structures reported in protein data bank (PDB) being generated by these powerful techniques. Despite their wide utilization in protein structure determination, these two techniques have logical limitations, with X-ray crystallography being unsuitable for the analysis of highly dynamic structures and with NMR spectroscopy being restricted to the analysis of relatively small proteins. In recent years, we have witnessed an explosive development of the techniques based on Cryo-electron microscopy (Cryo-EM) for structural characterization of biological molecules. In fact, single-particle Cryo-EM is a special niche as it is a technique of choice for the structural analysis of large, structurally heterogeneous, and dynamic complexes. Here, sub-nanometer atomic resolution can be achieved (i.e., resolution below 10 A) via single-particle imaging of non-crystalline specimens, with accurate 3D reconstruction being generated based on the computational averaging of multiple 2D projection images of the same particle that was frozen rapidly in solution. We provide here a brief overview of single-particle Cryo-EM and show how Cryo-EM has revolutionized structural investigations of membrane proteins. We also show that the presence of intrinsically disordered or flexible regions in a target protein represents one of the major limitations of this promising technique.

Journal ArticleDOI
TL;DR: It is shown that quinary interactions can amplify and even reverse the mutational response of proteins, being a key aspect in pathogenic protein misfolding and aggregation.
Abstract: In cells, proteins are embedded in a crowded environment that controls their properties via manifold avenues including weak protein–macromolecule interactions. A molecular level understanding of these quinary interactions and their contribution to protein stability, function, and localization in the cell is central to modern structural biology. Using a mutational analysis to quantify the energetic contributions of single amino acids to the stability of the ALS related protein superoxide dismutase I (SOD1) in mammalian cells, we show that quinary interactions destabilize SOD1 by a similar energetic offset for most of the mutants, but there are notable exceptions: Mutants that alter its surface properties can even lead to a stabilization of the protein in the cell as compared to the test tube. In conclusion, quinary interactions can amplify and even reverse the mutational response of proteins, being a key aspect in pathogenic protein misfolding and aggregation.

Journal ArticleDOI
03 Oct 2019-eLife
TL;DR: Cryo-EM structures of human SLC1A5 and its complex with the substrate, L-glutamine in an outward-facing conformation reveal insights into the conformation of the critical ECL2a loop which connects the two domains, thus allowing rigid body movement of the transport domain throughout the transport cycle.
Abstract: Alanine-serine-cysteine transporter 2 (ASCT2, SLC1A5) is the primary transporter of glutamine in cancer cells and regulates the mTORC1 signaling pathway. The SLC1A5 function involves finely tuned orchestration of two domain movements that include the substrate-binding transport domain and the scaffold domain. Here, we present cryo-EM structures of human SLC1A5 and its complex with the substrate, L-glutamine in an outward-facing conformation. These structures reveal insights into the conformation of the critical ECL2a loop which connects the two domains, thus allowing rigid body movement of the transport domain throughout the transport cycle. Furthermore, the structures provide new insights into substrate recognition, which involves conformational changes in the HP2 loop. A putative cholesterol binding site was observed near the domain interface in the outward-facing state. Comparison with the previously determined inward-facing structure of SCL1A5 provides a basis for a more integrated understanding of substrate recognition and transport mechanism in the SLC1 family.

Journal ArticleDOI
TL;DR: The outstanding structural and pharmacological features that have emerged from these new lipid receptor structures are presented, providing evidence of the fundamental role of GPCRs in the physiological integration of the lipid signaling system, and highlighting the importance of sustained research into the structural biology of G PCRs for the development of new therapeutics targeting lipid receptors.
Abstract: The first crystal structure of a G protein-coupled receptor (GPCR) was that of the bovine rhodopsin, solved in 2000, and is a light receptor within retina rode cells that enables vision by transducing a conformational signal from the light-induced isomerization of retinal covalently bound to the receptor. More than 7 years after this initial discovery and following more than 20 years of technological developments in GPCR expression, stabilization, and crystallography, the high-resolution structure of the adrenaline binding β2 -adrenergic receptor, a ligand diffusible receptor, was discovered. Since then, high-resolution structures of more than 53 unique GPCRs have been determined leading to a significant improvement in our understanding of the basic mechanisms of ligand-binding and ligand-mediated receptor activation that revolutionized the field of structural molecular pharmacology of GPCRs. Recently, several structures of eight unique lipid-binding receptors, one of the most difficult GPCR families to study, have been reported. This review presents the outstanding structural and pharmacological features that have emerged from these new lipid receptor structures. The impact of these findings goes beyond mechanistic insights, providing evidence of the fundamental role of GPCRs in the physiological integration of the lipid signaling system, and highlighting the importance of sustained research into the structural biology of GPCRs for the development of new therapeutics targeting lipid receptors.

Journal ArticleDOI
19 Dec 2019-eLife
TL;DR: This work considers the trimeric Na+-aspartate symporter GltPh, a homolog of an important class of neurotransmitter transporters, whose mechanism entails one of the most drastic structural changes known.
Abstract: That channels and transporters can influence the membrane morphology is increasingly recognized. Less appreciated is that the extent and free-energy cost of these deformations likely varies among different functional states of a protein, and thus, that they might contribute significantly to defining its mechanism. We consider the trimeric Na+-aspartate symporter GltPh, a homolog of an important class of neurotransmitter transporters, whose mechanism entails one of the most drastic structural changes known. Molecular simulations indicate that when the protomers become inward-facing, they cause deep, long-ranged, and yet mutually-independent membrane deformations. Using a novel simulation methodology, we estimate that the free-energy cost of this membrane perturbation is in the order of 6-7 kcal/mol per protomer. Compensating free-energy contributions within the protein or its environment must thus stabilize this inward-facing conformation for the transporter to function. We discuss these striking results in the context of existing experimental observations for this and other transporters.

Posted ContentDOI
22 Oct 2019-bioRxiv
TL;DR: It is demonstrated that engineered Nbs can also help overcome two major obstacles that limit the resolution of single-particle cryo-EM reconstructions: particle size and preferential orientation at the water-air interface.
Abstract: Nanobodies (Nbs) are popular and versatile tools for structural biology because they have a compact single immunoglobulin domain organization. Nbs bind their target proteins with high affinities while reducing their conformational heterogeneity, and they stabilize multi-protein complexes. Here we demonstrate that engineered Nbs can also help overcome two major obstacles that limit the resolution of single-particle cryo-EM reconstructions: particle size and preferential orientation at the water-air interface. We have developed and characterised novel constructs, termed megabodies, by grafting Nbs into selected protein scaffolds to increase their molecular weight while retaining the full antigen binding specificity and affinity. We show that the megabody design principles are applicable to different scaffold proteins and recognition domains of compatible geometries and are amenable for efficient selection from yeast display libraries. Moreover, we used a megabody to solve the 2.5 A resolution cryo-EM structure of a membrane protein that suffers from severe preferential orientation, the human GABAA β3 homopentameric receptor bound to its small-molecule agonist histamine.

Journal ArticleDOI
TL;DR: Current knowledge of the structural biology of Bcl-xL is reviewed and how this has impacted the understanding of the molecular details of the intrinsic apoptotic pathway is reviewed.
Abstract: Interactions between the pro-survival and pro-apoptotic members of the Bcl-2 family of proteins dictate whether a cell lives or dies. Much of our knowledge of the molecular details of these interactions has come from biochemical and structural studies on the pro-survival protein Bcl-xL. The first high-resolution structure of any Bcl-2 family member was of Bcl-xL, which revealed the conserved topology amongst all family members. Subsequent structures of Bcl-xL complexes with pro-apoptotic ligands demonstrated the general features of all pro-survival:pro-apoptotic complexes. Structural studies involving Bcl-xL were also the basis for the discovery of the first small-molecule pro-survival protein inhibitors, leading ultimately to the development of a new class of drugs now successfully used for cancer treatment in the clinic. This article will review our current knowledge of the structural biology of Bcl-xL and how this has impacted our understanding of the molecular details of the intrinsic apoptotic pathway.

Journal ArticleDOI
TL;DR: This minireview summarizes recent structural and computational studies on membrane contributions to binding processes, elucidating both lipid pathways of ligand access and binding mechanisms for several orthosteric and allosteric ligands of class A and class B GPCRs.
Abstract: The ligand-binding sites of many G protein-coupled receptors (GPCRs) are situated around and deeply embedded within the central pocket formed by their seven transmembrane-spanning α-helical domains. Generally, these binding sites are assumed accessible to endogenous ligands from the aqueous phase. Recent advances in the structural biology of GPCRs, along with biophysical and computational studies, suggest that amphiphilic and lipophilic molecules may gain access to these receptors by first partitioning into the membrane and then reaching the binding site via lateral diffusion through the lipid bilayer. In addition, several crystal structures of class A and class B GPCRs bound to their ligands offer unprecedented details on the existence of lipid-facing allosteric binding sites outside the transmembrane helices that can only be reached via lipid pathways. The highly organized structure of the lipid bilayer may direct lipophilic or amphiphilic drugs to a specific depth within the bilayer, changing local concentration of the drug near the binding site and affecting its binding kinetics. Additionally, the constraints of the lipid bilayer, including its composition and biophysical properties, may play a critical role in "pre-organizing" ligand molecules in an optimal orientation and conformation to facilitate receptor binding. Despite its clear involvement in molecular recognition processes, the critical role of the membrane in binding ligands to lipid-exposed transmembrane binding sites remains poorly understood and warrants comprehensive investigation. Understanding the mechanistic basis of the structure-membrane interaction relationship of drugs will not only provide useful insights about receptor binding kinetics but will also enhance our ability to take advantage of the apparent membrane contributions when designing drugs that target transmembrane proteins with improved efficacy and safety. In this minireview, we summarize recent structural and computational studies on membrane contributions to binding processes, elucidating both lipid pathways of ligand access and binding mechanisms for several orthosteric and allosteric ligands of class A and class B GPCRs.