scispace - formally typeset
Search or ask a question

Showing papers on "Structural biology published in 2021"


Journal ArticleDOI
15 Jul 2021-Nature
TL;DR: For example, AlphaFold as mentioned in this paper predicts protein structures with an accuracy competitive with experimental structures in the majority of cases using a novel deep learning architecture. But the accuracy is limited by the fact that no homologous structure is available.
Abstract: Proteins are essential to life, and understanding their structure can facilitate a mechanistic understanding of their function. Through an enormous experimental effort1–4, the structures of around 100,000 unique proteins have been determined5, but this represents a small fraction of the billions of known protein sequences6,7. Structural coverage is bottlenecked by the months to years of painstaking effort required to determine a single protein structure. Accurate computational approaches are needed to address this gap and to enable large-scale structural bioinformatics. Predicting the three-dimensional structure that a protein will adopt based solely on its amino acid sequence—the structure prediction component of the ‘protein folding problem’8—has been an important open research problem for more than 50 years9. Despite recent progress10–14, existing methods fall far short of atomic accuracy, especially when no homologous structure is available. Here we provide the first computational method that can regularly predict protein structures with atomic accuracy even in cases in which no similar structure is known. We validated an entirely redesigned version of our neural network-based model, AlphaFold, in the challenging 14th Critical Assessment of protein Structure Prediction (CASP14)15, demonstrating accuracy competitive with experimental structures in a majority of cases and greatly outperforming other methods. Underpinning the latest version of AlphaFold is a novel machine learning approach that incorporates physical and biological knowledge about protein structure, leveraging multi-sequence alignments, into the design of the deep learning algorithm. AlphaFold predicts protein structures with an accuracy competitive with experimental structures in the majority of cases using a novel deep learning architecture.

10,601 citations



Journal ArticleDOI
08 Feb 2021-eLife
TL;DR: In this article, the S:ACE2 interaction interface was mapped using amide hydrogen-deuterium exchange mass spectrometry and molecular dynamics simulations and uncovered long-range allosteric propagation of ACE2 binding to sites necessary for host-mediated proteolysis of S protein.
Abstract: The spike (S) protein is the main handle for SARS-CoV-2 to enter host cells via surface angiotensin-converting enzyme 2 (ACE2) receptors. How ACE2 binding activates proteolysis of S protein is unknown. Here, using amide hydrogen-deuterium exchange mass spectrometry and molecular dynamics simulations, we have mapped the S:ACE2 interaction interface and uncovered long-range allosteric propagation of ACE2 binding to sites necessary for host-mediated proteolysis of S protein, critical for viral host entry. Unexpectedly, ACE2 binding enhances dynamics at a distal S1/S2 cleavage site and flanking protease docking site ~27 A away while dampening dynamics of the stalk hinge (central helix and heptad repeat [HR]) regions ~130 A away. This highlights that the stalk and proteolysis sites of the S protein are dynamic hotspots in the prefusion state. Our findings provide a dynamics map of the S:ACE2 interface in solution and also offer mechanistic insights into how ACE2 binding is allosterically coupled to distal proteolytic processing sites and viral-host membrane fusion. Thus, protease docking sites flanking the S1/S2 cleavage site represent alternate allosteric hotspot targets for potential therapeutic development.

79 citations


Posted ContentDOI
26 Sep 2021-bioRxiv
TL;DR: In this article, the AlphaFold 2 (AF2) model was used to predict protein disorder and protein complexes, which can be used across diverse applications equally well compared to experimentally determined structures when the confidence metrics are critically considered.
Abstract: Most proteins fold into 3D structures that determine how they function and orchestrate the biological processes of the cell. Recent developments in computational methods have led to protein structure predictions that have reached the accuracy of experimentally determined models. While this has been independently verified, the implementation of these methods across structural biology applications remains to be tested. Here, we evaluate the use of AlphaFold 2 (AF2) predictions in the study of characteristic structural elements; the impact of missense variants; function and ligand binding site predictions; modelling of interactions; and modelling of experimental structural data. For 11 proteomes, an average of 25% additional residues can be confidently modelled when compared to homology modelling, identifying structural features rarely seen in the PDB. AF2-based predictions of protein disorder and protein complexes surpass state-of-the-art tools and AF2 models can be used across diverse applications equally well compared to experimentally determined structures, when the confidence metrics are critically considered. In summary, we find that these advances are likely to have a transformative impact in structural biology and broader life science research.

78 citations


Journal ArticleDOI
21 Jan 2021-Cell
TL;DR: In this article, a global protein structural readout based on limited proteolysis-mass spectrometry (LiP-MS) was used to detect functional alterations in bacteria undergoing nutrient adaptation and in yeast responding to acute stress.

62 citations


Journal ArticleDOI
TL;DR: In this paper, the authors developed a bottom-up iterative method, Build and Retrieve (BaR), that enables the identification and determination of cryo-EM structures of a variety of inner and outer membrane proteins, including membrane protein complexes of different sizes and dimensions.
Abstract: Single-particle cryo-electron microscopy (cryo-EM) has become a powerful technique in the field of structural biology. However, the inability to reliably produce pure, homogeneous membrane protein samples hampers the progress of their structural determination. Here, we develop a bottom-up iterative method, Build and Retrieve (BaR), that enables the identification and determination of cryo-EM structures of a variety of inner and outer membrane proteins, including membrane protein complexes of different sizes and dimensions, from a heterogeneous, impure protein sample. We also use the BaR methodology to elucidate structural information from Escherichia coli K12 crude membrane and raw lysate. The findings demonstrate that it is possible to solve high-resolution structures of a number of relatively small (<100 kDa) and less abundant (<10%) unidentified membrane proteins within a single, heterogeneous sample. Importantly, these results highlight the potential of cryo-EM for systems structural proteomics. The iterative Build and Retrieve (BaR) methodology facilitates the solving of cryo-EM structures of multiple membrane (and soluble) proteins simultaneously, including small and low-abundance membrane proteins.

57 citations


Journal ArticleDOI
TL;DR: In this paper, the authors address the challenges of large-scale interaction prediction at residue resolution with a fast alignment concatenation method and a probabilistic score for the interaction of residues.
Abstract: Increasing numbers of protein interactions have been identified in high-throughput experiments, but only a small proportion have solved structures. Recently, sequence coevolution-based approaches have led to a breakthrough in predicting monomer protein structures and protein interaction interfaces. Here, we address the challenges of large-scale interaction prediction at residue resolution with a fast alignment concatenation method and a probabilistic score for the interaction of residues. Importantly, this method (EVcomplex2) is able to assess the likelihood of a protein interaction, as we show here applied to large-scale experimental datasets where the pairwise interactions are unknown. We predict 504 interactions de novo in the E. coli membrane proteome, including 243 that are newly discovered. While EVcomplex2 does not require available structures, coevolving residue pairs can be used to produce structural models of protein interactions, as done here for membrane complexes including the Flagellar Hook-Filament Junction and the Tol/Pal complex. Our understanding of the residue-level details of protein interactions remains incomplete. Here, the authors show sequence coevolution can be used to infer interacting proteins with residue-level details, including predicting 467 interactions de novo in the Escherichia coli cell envelope proteome.

57 citations


Journal ArticleDOI
TL;DR: In this paper, the contributions of chemical cross-linking combined with mass spectrometry (XL-MS) for studying three-dimensional structures of proteins and for investigating protein-protein interactions are outlined.
Abstract: Mass spectrometry (MS) has become one of the key technologies of structural biology. In this review, the contributions of chemical cross-linking combined with mass spectrometry (XL-MS) for studying three-dimensional structures of proteins and for investigating protein-protein interactions are outlined. We summarize the most important cross-linking reagents, software tools, and XL-MS workflows and highlight prominent examples for characterizing proteins, their assemblies, and interaction networks in vitro and in vivo. Computational modeling plays a crucial role in deriving 3D-structural information from XL-MS data. Integrating XL-MS with other techniques of structural biology, such as cryo-electron microscopy, has been successful in addressing biological questions that to date could not be answered. XL-MS is therefore expected to play an increasingly important role in structural biology in the future.

54 citations


Journal ArticleDOI
22 Jan 2021-iScience
TL;DR: The crystal structure of the globular domain of SARS-CoV-2 Nsp1 is reported, encompassing residues 13 to 127, at a resolution of 1.65 Å, and reveals how variations in amino acid sequence manifest as distinct structural features.

53 citations


Posted ContentDOI
20 Sep 2021-bioRxiv
TL;DR: In this paper, the ability of AlphaFold to predict the impact of single mutations on protein stability and function has been examined, and it was shown that there is no correlation between alphaFold output metrics and change of protein stability or fluorescence.
Abstract: AlphaFold changed the field of structural biology by achieving three-dimensional (3D) structure prediction from protein sequence at experimental quality. The astounding success even led to claims that the protein folding problem is "solved". However, protein folding problem is more than just structure prediction from sequence. Presently, it is unknown if the AlphaFold-triggered revolution could help to solve other problems related to protein folding. Here we assay the ability of AlphaFold to predict the impact of single mutations on protein stability ({Delta}{Delta}G) and function. To study the question we extracted metrics from AlphaFold predictions before and after single mutation in a protein and correlated the predicted change with the experimentally known {Delta}{Delta}G values. Additionally, we correlated the AlphaFold predictions on the impact of a single mutation on structure with a large scale dataset of single mutations in GFP with the experimentally assayed levels of fluorescence. We found a very weak or no correlation between AlphaFold output metrics and change of protein stability or fluorescence. Our results imply that AlphaFold cannot be immediately applied to other problems or applications in protein folding.

52 citations


Journal ArticleDOI
TL;DR: It is suggested that the recent structural information provides new insights into the molecular mechanisms underlying synaptic functions of AMPAR–auxiliary subunit complexes.
Abstract: Fast excitatory synaptic transmission in the mammalian brain is largely mediated by AMPA-type ionotropic glutamate receptors (AMPARs), which are activated by the neurotransmitter glutamate. In synapses, the function of AMPARs is tuned by their auxiliary subunits, a diverse set of membrane proteins associated with the core pore-forming subunits of the AMPARs. Each auxiliary subunit provides distinct functional modulation of AMPARs, ranging from regulation of trafficking to shaping ion channel gating kinetics. Understanding the molecular mechanism of the function of these complexes is key to decoding synaptic modulation and their global roles in cognitive activities, such as learning and memory. Here, we review the structural and molecular complexity of AMPAR-auxiliary subunit complexes, as well as their functional diversity in different brain regions. We suggest that the recent structural information provides new insights into the molecular mechanisms underlying synaptic functions of AMPAR-auxiliary subunit complexes.

Journal ArticleDOI
TL;DR: The results of the most recent community-wide assessment of protein structure prediction experiment (CASP14) have demonstrated that the protein structural prediction problem can be largely solved through the use of end-to-end deep machine learning techniques, where correct folds could be built for nearly all single-domain proteins without using the PDB templates.

Journal ArticleDOI
01 Feb 2021
TL;DR: In this paper, a mass-spectrometry-based approach was developed to monitor the reaction of the active-site selenocysteine Sec46 with covalent inhibitors.
Abstract: Wild-type human glutathione peroxidase 4 (GPX4) was co-expressed with SBP2 (selenocysteine insertion sequence-binding protein 2) in human HEK cells to achieve efficient production of this selenocysteine-containing enzyme on a preparative scale for structural biology. The protein was purified and crystallized, and the crystal structure of the wild-type form of GPX4 was determined at 1.0 A resolution. The overall fold and the active site are conserved compared with previously determined crystal structures of mutated forms of GPX4. A mass-spectrometry-based approach was developed to monitor the reaction of the active-site selenocysteine Sec46 with covalent inhibitors. This, together with the introduction of a surface mutant (Cys66Ser), enabled the crystal structure determination of GPX4 in complex with the covalent inhibitor ML162 [(S)-enantiomer]. The mass-spectrometry-based approach described here opens the path to further co-complex crystal structures of this potential cancer drug target in complex with covalent inhibitors.

Journal ArticleDOI
TL;DR: These analyses provide a quantitative overview of where the field of membrane protein structural biology stands and how it has developed over time and are expected to serve as a useful tool to streamline future membrane protein structure determination by guiding the choice of detergent/membrane mimetic.

Journal ArticleDOI
TL;DR: In this article, the aggregation of α-synuclein bound to negatively charged phospholipid small unilamellar vesicles is investigated. And the authors identify key time points in the aggregation process that enable targeted isolation of prefibrillar and early fibrilar intermediates.
Abstract: Recent advances in the structural biology of disease-relevant α-synuclein fibrils have revealed a variety of structures, yet little is known about the process of fibril aggregate formation. Characterization of intermediate species that form during aggregation is crucial; however, this has proven very challenging because of their transient nature, heterogeneity, and low population. Here, we investigate the aggregation of α-synuclein bound to negatively charged phospholipid small unilamellar vesicles. Through a combination of kinetic and structural studies, we identify key time points in the aggregation process that enable targeted isolation of prefibrillar and early fibrillar intermediates. By using solid-state nuclear magnetic resonance, we show the gradual buildup of structural features in an α-synuclein fibril filament, revealing a segmental folding process. We identify distinct membrane-binding domains in α-synuclein aggregates, and the combined data are used to present a comprehensive mechanism of the folding of α-synuclein on lipid membranes.

Journal ArticleDOI
26 Jul 2021-eLife
TL;DR: In this paper, the authors describe the single particle cryo-electron microscopy (cryo-EM) structure of the entire catalytically active E. coli complex I reconstituted into lipid nanodiscs.
Abstract: Respiratory complex I is a multi-subunit membrane protein complex that reversibly couples NADH oxidation and ubiquinone reduction with proton translocation against transmembrane potential. Complex I from Escherichia coli is among the best functionally characterized complexes, but its structure remains unknown, hindering further studies to understand the enzyme coupling mechanism. Here, we describe the single particle cryo-electron microscopy (cryo-EM) structure of the entire catalytically active E. coli complex I reconstituted into lipid nanodiscs. The structure of this mesophilic bacterial complex I displays highly dynamic connection between the peripheral and membrane domains. The peripheral domain assembly is stabilized by unique terminal extensions and an insertion loop. The membrane domain structure reveals novel dynamic features. Unusual conformation of the conserved interface between the peripheral and membrane domains suggests an uncoupled conformation of the complex. Considering constraints imposed by the structural data, we suggest a new simple hypothetical coupling mechanism for the molecular machine.

Journal ArticleDOI
TL;DR: In this article, the authors highlight the challenges that arise when considering multiple structural conformations, protein complexes, and polymorphic assemblies, and highlight further developments, both in modeling programs and in methods to solve experimental structures, towards better and quicker investigation of structure function relationships.

Journal ArticleDOI
TL;DR: In this article, the authors summarize the current knowledge on adenovirus structure, with an emphasis on high-resolution structures obtained since 2010, and summarize the role of the core proteins in genome condensation and virion stability.
Abstract: Adenoviruses are large (~950 A) and complex non-enveloped, dsDNA icosahedral viruses. They have a pseudo-T = 25 triangulation number with at least 12 different proteins composing the virion. These include the major and minor capsid proteins, core proteins, maturation protease, terminal protein, and packaging machinery. Although adenoviruses have been studied for more than 60 years, deciphering their architecture has presented a challenge for structural biology techniques. An outstanding event was the first near-atomic resolution structure of human adenovirus type 5 (HAdV-C5), solved by cryo-electron microscopy (cryo-EM) in 2010. Discovery of new adenovirus types, together with methodological advances in structural biology techniques, in particular cryo-EM, has lately produced a considerable amount of new, high-resolution data on the organization of adenoviruses belonging to different species. In spite of these advances, the organization of the non-icosahedral core is still a great unknown. Nevertheless, alternative techniques such as atomic force microscopy (AFM) are providing interesting glimpses on the role of the core proteins in genome condensation and virion stability. Here we summarize the current knowledge on adenovirus structure, with an emphasis on high-resolution structures obtained since 2010.

Journal ArticleDOI
TL;DR: In this article, the authors highlight recent advances in the understanding of S-layer structure and assembly, made possible by rapidly evolving structural and cell biology methods, and discuss a common molecular framework that may be used to understand the structural organization of Slayer proteins across bacteria and archaea.

Journal ArticleDOI
TL;DR: In this article, the authors present a review of copolymer design strategies and methods for the characterization of transmembrane proteins within native nanodiscs by cryo-electron microscopy (cryo-EM), transmission electron microscopy, nuclear magnetic resonance spectroscopy, electron paramagnetic resonance, X-ray diffraction, surface plasmon resonance, and mass spectrometry.

Journal ArticleDOI
TL;DR: The structure of the single-stranded overhang is not known with certainty, with disparate models proposed in the literature as discussed by the authors, and the results of an integrated structural biology approach that combines small-angle X-ray scattering, circular dichroism (CD), analytical ultracentrifugation, size-exclusion column chromatography and molecular dynamics simulations that provide the most detailed characterization to date of the structure of telomeric overhang.
Abstract: Human telomeres contain the repeat DNA sequence 5'-d(TTAGGG), with duplex regions that are several kilobases long terminating in a 3' single-stranded overhang. The structure of the single-stranded overhang is not known with certainty, with disparate models proposed in the literature. We report here the results of an integrated structural biology approach that combines small-angle X-ray scattering, circular dichroism (CD), analytical ultracentrifugation, size-exclusion column chromatography and molecular dynamics simulations that provide the most detailed characterization to date of the structure of the telomeric overhang. We find that the single-stranded sequences 5'-d(TTAGGG)n, with n = 8, 12 and 16, fold into multimeric structures containing the maximal number (2, 3 and 4, respectively) of contiguous G4 units with no long gaps between units. The G4 units are a mixture of hybrid-1 and hybrid-2 conformers. In the multimeric structures, G4 units interact, at least transiently, at the interfaces between units to produce distinctive CD signatures. Global fitting of our hydrodynamic and scattering data to a worm-like chain (WLC) model indicates that these multimeric G4 structures are semi-flexible, with a persistence length of ∼34 A. Investigations of its flexibility using MD simulations reveal stacking, unstacking, and coiling movements, which yield unique sites for drug targeting.

Journal ArticleDOI
07 Apr 2021-eLife
TL;DR: Chadda et al. as discussed by the authors showed that the main reason why CLC proteins dimerize lies in their interaction with the lipid membrane, and not the attraction of one protein to its partner.
Abstract: A cell’s outer membrane is made of molecules called lipids, which band together to form a flexible thin film, just two molecules thick This membrane is dotted with proteins that transport materials in to and out of cells Most of these membrane proteins join with other proteins to form structures known as oligomers Except, how membrane-bound proteins assemble into oligomers – the physical forces driving these molecules to take shape – remains unclear This is partly because the structural, physical and chemical properties of fat-like lipid membranes are radically different to the cell’s watery interior Consequently, the conditions under which membrane oligomers form are distinct from those surrounding proteins inside cells Membrane proteins are also more difficult to study and characterize than water-soluble proteins inside the cell, and yet many therapeutic drugs such as antibiotics specifically target membrane proteins Overall, our understanding of how the unique properties of lipid membranes affect the formation of protein structures embedded within, is lacking and warrants further investigation Now, Chadda, Bernhardt et al focused on one membrane protein, known as CLC, which tends to exist in pairs – or dimers To understand why these proteins form dimers (a process called dimerization) Chadda, Bernhardt et al first used computer simulations, and then validated the findings in experimental tests These complementary approaches demonstrated that the main reason CLC proteins ‘dimerize’ lies in their interaction with the lipid membrane, and not the attraction of one protein to its partner When CLC proteins are on their own, they deform the surrounding membrane and create structural defects that put the membrane under strain But when two CLC proteins join as a dimer, this membrane strain disappears – making dimerization the more stable and energetically favorable option Chadda, Bernhardt et al also showed that with the addition of a few certain lipids, specifically smaller lipids, cell membranes become more tolerant of protein-induced structural changes This might explain how cells could use various lipids to fine-tune the activity of membrane proteins by controlling how oligomers form However, the theory needs to be examined further Altogether, this work has provided fundamental insights into the physical forces shaping membrane-bound proteins, relevant to researchers studying cell biology and pharmacology alike

Journal ArticleDOI
03 Sep 2021
TL;DR: The most widely used membrane mimetics in structural and functional studies of integral membrane proteins (IMPs) are detergents, liposomes, bicelles, nanodiscs/Lipodisqs, amphipols, and lipidic cubic phases as discussed by the authors.
Abstract: Integral membrane proteins (IMPs) fulfill important physiological functions by providing cell–environment, cell–cell and virus–host communication; nutrients intake; export of toxic compounds out of cells; and more. However, some IMPs have obliterated functions due to polypeptide mutations, modifications in membrane properties and/or other environmental factors—resulting in damaged binding to ligands and the adoption of non-physiological conformations that prevent the protein from returning to its physiological state. Thus, elucidating IMPs’ mechanisms of function and malfunction at the molecular level is important for enhancing our understanding of cell and organism physiology. This understanding also helps pharmaceutical developments for restoring or inhibiting protein activity. To this end, in vitro studies provide invaluable information about IMPs’ structure and the relation between structural dynamics and function. Typically, these studies are conducted on transferred from native membranes to membrane-mimicking nano-platforms (membrane mimetics) purified IMPs. Here, we review the most widely used membrane mimetics in structural and functional studies of IMPs. These membrane mimetics are detergents, liposomes, bicelles, nanodiscs/Lipodisqs, amphipols, and lipidic cubic phases. We also discuss the protocols for IMPs reconstitution in membrane mimetics as well as the applicability of these membrane mimetic-IMP complexes in studies via a variety of biochemical, biophysical, and structural biology techniques.

Journal ArticleDOI
TL;DR: The past, present, and potential future of integrative structural biology as a tool for characterizing protein interactions in their cellular context are described.
Abstract: Microorganisms rely on protein interactions to transmit signals, react to stimuli, and grow. One of the best ways to understand these protein interactions is through structural characterization. However, in the past, structural knowledge was limited to stable, high-affinity complexes that could be crystallized. Recent developments in structural biology have revolutionized how protein interactions are characterized. The combination of multiple techniques, known as integrative structural biology, has provided insight into how large protein complexes interact in their native environment. In this mini-review, we describe the past, present, and potential future of integrative structural biology as a tool for characterizing protein interactions in their cellular context.

Journal ArticleDOI
TL;DR: Crosslinking mass spectrometry (XL-MS) is an emerging technique capable of capturing transient and dynamic information on protein interactions and assemblies in their native environment as discussed by the authors, which can enable visualization of protein structures and interactions within the crowded macromolecular environment in living systems that can dramatically increase understanding of biological functions.
Abstract: Protein structure underpins functional roles in all biological processes; therefore, improved understanding of protein structures is of fundamental importance in nearly all biological and biomedical research areas. Traditional techniques such as X-ray crystallography and more recently, cryo-EM, can reveal structural features on isolated proteins/protein complexes at atomic resolution level and have become indispensable tools for structural biology. Crosslinking mass spectrometry (XL-MS), on the other hand, is an emerging technique capable of capturing transient and dynamic information on protein interactions and assemblies in their native environment. The combination of XL-MS with traditional techniques holds potential for bridging the gap between structural biology and systems biology approaches. Such a combination will enable visualization of protein structures and interactions within the crowded macromolecular environment in living systems that can dramatically increase understanding of biological functions. In this review, we first discuss general strategies of XL-MS and then survey recent examples to show how qualitative and quantitative XL-MS studies can be integrated with available protein structural data to better understand biological function at systems level.

Journal ArticleDOI
31 Aug 2021-eLife
TL;DR: In this paper, an all-atom model with simplified energetics was used to perform thousands of simulations in which the protein transitions between the prefusion and post-fusion conformations.
Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly contagious, and transmission involves a series of processes that may be targeted by vaccines and therapeutics. During transmission, host cell invasion is controlled by a large-scale (200-300 A) conformational change of the Spike protein. This conformational rearrangement leads to membrane fusion, which creates transmembrane pores through which the viral genome is passed to the host. During Spike-protein-mediated fusion, the fusion peptides must be released from the core of the protein and associate with the host membrane. While infection relies on this transition between the prefusion and postfusion conformations, there has yet to be a biophysical characterization reported for this rearrangement. That is, structures are available for the endpoints, though the intermediate conformational processes have not been described. Interestingly, the Spike protein possesses many post-translational modifications, in the form of branched glycans that flank the surface of the assembly. With the current lack of data on the pre-to-post transition, the precise role of glycans during cell invasion has also remained unclear. To provide an initial mechanistic description of the pre-to-post rearrangement, an all-atom model with simplified energetics was used to perform thousands of simulations in which the protein transitions between the prefusion and postfusion conformations. These simulations indicate that the steric composition of the glycans can induce a pause during the Spike protein conformational change. We additionally show that this glycan-induced delay provides a critical opportunity for the fusion peptides to capture the host cell. In contrast, in the absence of glycans, the viral particle would likely fail to enter the host. This analysis reveals how the glycosylation state can regulate infectivity, while providing a much-needed structural framework for studying the dynamics of this pervasive pathogen.

Journal ArticleDOI
TL;DR: There are now several specialized mass spectrometry (MS) methods, each with unique sample preparation, data acquisition, and data processing protocols, referred to as structural MS and include cross-linking, hydrogen-deuterium exchange, hydroxyl radical footprinting, native, ion mobility, and top-down MS.
Abstract: Mass spectrometry (MS) is increasingly being used to probe the structure and dynamics of proteins and the complexes they form with other macromolecules. There are now several specialized MS methods, each with unique sample preparation, data acquisition, and data processing protocols. Collectively, these methods are referred to as structural MS and include cross-linking, hydrogen-deuterium exchange, hydroxyl radical footprinting, native, ion mobility, and top-down MS. Each of these provides a unique type of structural information, ranging from composition and stoichiometry through to residue level proximity and solvent accessibility. Structural MS has proved particularly beneficial in studying protein classes for which analysis by classic structural biology techniques proves challenging such as glycosylated or intrinsically disordered proteins. To capture the structural details for a particular system, especially larger multiprotein complexes, more than one structural MS method with other structural and biophysical techniques is often required. Key to integrating these diverse data are computational strategies and software solutions to facilitate this process. We provide a background to the structural MS methods and briefly summarize other structural methods and how these are combined with MS. We then describe current state of the art approaches for the integration of structural MS data for structural biology. We quantify how often these methods are used together and provide examples where such combinations have been fruitful. To illustrate the power of integrative approaches, we discuss progress in solving the structures of the proteasome and the nuclear pore complex. We also discuss how information from structural MS, particularly pertaining to protein dynamics, is not currently utilized in integrative workflows and how such information can provide a more accurate picture of the systems studied. We conclude by discussing new developments in the MS and computational fields that will further enable in-cell structural studies.

Journal ArticleDOI
19 Feb 2021-eLife
TL;DR: The structure of human ABCA4 in two conformations was reported in this paper. But the structure of the human ABC-binding cassette (ABC) transporter family is unknown, and it is not known how it recruits, flips, and releases retinoids.
Abstract: The ATP-binding cassette (ABC) transporter family contains thousands of members with diverse functions. Movement of the substrate, powered by ATP hydrolysis, can be outward (export) or inward (import). ABCA4 is a eukaryotic importer transporting retinal to the cytosol to enter the visual cycle. It also removes toxic retinoids from the disc lumen. Mutations in ABCA4 cause impaired vision or blindness. Despite decades of clinical, biochemical, and animal model studies, the molecular mechanism of ABCA4 is unknown. Here, we report the structures of human ABCA4 in two conformations. In the absence of ATP, ABCA4 adopts an outward-facing conformation, poised to recruit substrate. The presence of ATP induces large conformational changes that could lead to substrate release. These structures provide a molecular basis to understand many disease-causing mutations and a rational guide for new experiments to uncover how ABCA4 recruits, flips, and releases retinoids.

Journal ArticleDOI
TL;DR: In this paper, the effect of polyethylene glycol of molecular weight 4 kilo Dalton (PEG 4kDa) was investigated to highlight the structural transformations (tertiary and secondary structure) in cyt c using a choice of spectroscopic techniques (including UV-Vis absorption, near-UV, far-UV and Soret circular dichroism and fluorescence spectroscopy).
Abstract: One of the significant proteins that have attracted research groups due to virtue of being a potent selective anticancer drug target and property of triggering apoptosis upon release in cytoplasm is cytochrome c (cyt c). The mechanical transformations due to the macromolecular crowding in membrane in the mammalian cell are proposed to be useful inductors of changes in volume. It is very interesting to know that mitochondrial function were observed to be improved by polyethylene glycol (PEG) interaction, which in turn inhibits the cyt c (a pro-apoptotic cell death factor). In this work, the effect of polyethylene glycol of molecular weight 4 kilo Dalton (PEG 4 kDa) was investigated to highlight the structural transformations (tertiary and secondary structure) in cyt c using a choice of spectroscopic techniques (including UV–Vis absorption, near-UV, far-UV and Soret circular dichroism and fluorescence spectroscopy), which shows noteworthy shifts in the secondary and tertiary structures at higher concentrations of PEG 4 kDa with small changes in the heme-globular interactions. The size distribution changes of native protein treated with various concentrations of the crowder were observed and analyzed by dynamic light scattering (DLS). The interaction studies of the crowder with the protein was observed and analyzed by FTIR, isothermal titration calorimetry, time resolved fluorescence and molecular docking. The investigations suggested that the structural changes in the protein occurred due to soft interactions of PEG 4 kDa, which usually destabilizes proteins. The experimental evidence in this study proposed that crowding could be another approach to mechanical super-competition and free of certain markers that could aid in the identification and control of various diseases. This study suggests that crowders at specific concentrations, which softly interact with proteins, can be exploited as remedy for various diseases.

Journal ArticleDOI
22 Jul 2021
TL;DR: In this article, the authors combined several techniques of integrative structural biology to characterize Nedd4-2 and its complex with 14-3-3 and showed that phosphorylated Ser342 and Ser448 are the key residues that facilitate 14 3-3 protein binding.
Abstract: Neural precursor cell expressed developmentally down-regulated 4 ligase (Nedd4-2) is an E3 ubiquitin ligase that targets proteins for ubiquitination and endocytosis, thereby regulating numerous ion channels, membrane receptors and tumor suppressors. Nedd4-2 activity is regulated by autoinhibition, calcium binding, oxidative stress, substrate binding, phosphorylation and 14-3-3 protein binding. However, the structural basis of 14-3-3-mediated Nedd4-2 regulation remains poorly understood. Here, we combined several techniques of integrative structural biology to characterize Nedd4-2 and its complex with 14-3-3. We demonstrate that phosphorylated Ser342 and Ser448 are the key residues that facilitate 14-3-3 protein binding to Nedd4-2 and that 14-3-3 protein binding induces a structural rearrangement of Nedd4-2 by inhibiting interactions between its structured domains. Overall, our findings provide the structural glimpse into the 14-3-3-mediated Nedd4-2 regulation and highlight the potential of the Nedd4-2:14-3-3 complex as a pharmacological target for Nedd4-2-associated diseases such as hypertension, epilepsy, kidney disease and cancer.