scispace - formally typeset
Search or ask a question
Topic

Structural biology

About: Structural biology is a research topic. Over the lifetime, 2206 publications have been published within this topic receiving 126070 citations.


Papers
More filters
Journal ArticleDOI
15 Feb 2007-Nature
TL;DR: The results offer no compelling evidence that Naf-BBL folds downhill, particularly as non-truncated, unmodified peripheral subunit binding domains seem to fold cooperatively.
Abstract: There is controversy as to whether homologues from the peripheral subunit binding domain family of small proteins fold 'downhill' (that is, non-cooperatively, in the absence of free-energy barriers between conformations) and whether they modulate their size for biological function. Sadqi et al. claim that Naf-BBL--a naphthylalanine-labelled, truncated version of this domain--folds in this way, on the grounds that they recorded a wide spread of melting temperatures of individual atoms measured by proton nuclear magnetic resonance (NMR) during their thermal denaturation. But their data are not of adequate quality to distinguish, within experimental error, between downhill folding and folding with a cooperative transition. Accordingly, their results offer no compelling evidence that Naf-BBL folds downhill, particularly as non-truncated, unmodified peripheral subunit binding domains seem to fold cooperatively.

55 citations

Journal ArticleDOI
TL;DR: The data unambiguously demonstrate that hnRNP A1 RRMs interact in solution, and surprisingly, the relative orientation of the two RRMs observed in solution is different from the one found in the crystal structure of free UP1 and rather resembles the one observed in the nucleic-acid bound form of the protein.
Abstract: Human hnRNP A1 is a multi-functional protein involved in many aspects of nucleic-acid processing such as alternative splicing, micro-RNA biogenesis, nucleo-cytoplasmic mRNA transport and telomere biogenesis and maintenance. The N-terminal region of hnRNP A1, also named unwinding protein 1 (UP1), is composed of two closely related RNA recognition motifs (RRM), and is followed by a C-terminal glycine rich region. Although crystal structures of UP1 revealed inter-domain interactions between RRM1 and RRM2 in both the free and bound form of UP1, these interactions have never been established in solution. Moreover, the relative orientation of hnRNP A1 RRMs is different in the free and bound crystal structures of UP1, raising the question of the biological significance of this domain movement. In the present study, we have used NMR spectroscopy in combination with segmental isotope labeling techniques to carefully analyze the inter-RRM contacts present in solution and subsequently determine the structure of UP1 in solution. Our data unambiguously demonstrate that hnRNP A1 RRMs interact in solution, and surprisingly, the relative orientation of the two RRMs observed in solution is different from the one found in the crystal structure of free UP1 and rather resembles the one observed in the nucleic-acid bound form of the protein. This strongly supports the idea that the two RRMs of hnRNP A1 have a single defined relative orientation which is the conformation previously observed in the bound form and now observed in solution using NMR. It is likely that the conformation in the crystal structure of the free form is a less stable form induced by crystal contacts. Importantly, the relative orientation of the RRMs in proteins containing multiple-RRMs strongly influences the RNA binding topologies that are practically accessible to these proteins. Indeed, RRM domains are asymmetric binding platforms contacting single-stranded nucleic acids in a single defined orientation. Therefore, the path of the nucleic acid molecule on the multiple RRM domains is strongly dependent on whether the RRMs are interacting with each other. The different nucleic acid recognition modes by multiple-RRM domains are briefly reviewed and analyzed on the basis of the current structural information.

55 citations

Journal ArticleDOI
TL;DR: 51,208 much improved topology models derived from using 502 Escherichia coli inner membrane proteins as queries in BLAST searches against a data base of 658,210 bacterial open reading frames from GenBank cover approximately 30% of all predicted bacterial inner membraneprotein in 225 fully sequenced bacterial genomes.

55 citations

Journal ArticleDOI
TL;DR: This review is focused on surface proteins of bacteria using Streptococcus pneumoniae, a Gram-positive bacterium, as an example, and mechanisms for hyaluronate lyase, pneumococcal surface protein A, pneumolysin, histidine-triad and fibronectin-binding proteins are discussed.
Abstract: Bacteria present a variety of molecules either on their surface or in a cell-free form. These molecules take part in numerous processes in the interactions with their host, with its tissues and other molecules. These molecules are essential to bacterial pathogenesis either during colonization or the spread/invasion stages, and most are virulence factors. This review is focused on such molecules using Streptococcus pneumoniae, a Gram-positive bacterium, as an example. Selected surface proteins are introduced, their structure described, and, whenever available, their mechanisms of function on an atomic level are explained. Such mechanisms for hyaluronate lyase, pneumococcal surface protein A, pneumolysin, histidine-triad and fibronectin-binding proteins are discussed. Elucidation of molecular mechanisms of virulence factors is essential for the understanding of bacteria and their functional properties. Structural biology appears pivotal for these studies, as structural and mechanistic insights facilitate rational approach to the development of new treatments.

55 citations

Book ChapterDOI
TL;DR: A novel experimental approach called "DNA curtains" is described that can be used to complement and extend more traditional techniques by providing real-time information about protein-nucleic acid interactions at the level of single molecules.
Abstract: Interactions between proteins and nucleic acids are at the molecular foundations of most key biological processes, including DNA replication, genome maintenance, the regulation of gene expression, and chromosome segregation. A complete understanding of these types of biological processes requires tackling questions with a range of different techniques, such as genetics, cell biology, molecular biology, biochemistry, and structural biology. Here, we describe a novel experimental approach called "DNA curtains" that can be used to complement and extend these more traditional techniques by providing real-time information about protein-nucleic acid interactions at the level of single molecules. We describe general features of the DNA curtain technology and its application to the study of protein-nucleic acid interactions in vitro. We also discuss some future developments that will help address crucial challenges to the field of single-molecule biology.

55 citations


Network Information
Related Topics (5)
Protein structure
42.3K papers, 3M citations
92% related
Transcription (biology)
56.5K papers, 2.9M citations
85% related
RNA
111.6K papers, 5.4M citations
85% related
Peptide sequence
84.1K papers, 4.3M citations
84% related
Chromatin
50.7K papers, 2.7M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202335
202272
2021149
2020154
2019152
2018140