scispace - formally typeset
Search or ask a question
Topic

Structural biology

About: Structural biology is a research topic. Over the lifetime, 2206 publications have been published within this topic receiving 126070 citations.


Papers
More filters
Journal ArticleDOI
01 Sep 2020-iScience
TL;DR: This study shows condensate-like states of fluorescently labeled structural mutant p53 in the nucleus of living cancer cells and identified small molecule compounds that interact with the p53 protein and lead to dissolution of p53 structural mutant condensates.

27 citations

Journal ArticleDOI
TL;DR: This review summarizes the results of the biochemistry of silk proteins as well as the knowledge of the molecular biology of the respective genes to produce recombinant silk proteins by biotechnological techniques.

27 citations

Journal ArticleDOI
TL;DR: A brief review of the diverse computational methods for predicting membrane protein structure and function, including recent progress and essential bioinformatics tools is provided, in the hope that this review will be instructive to users studying membrane protein biology in their choice of appropriate bioInformatics methods.
Abstract: Membrane proteins play important roles in the biology of the cell, including intercellular communication and molecular transport. Their well-established importance notwithstanding, the high-resolution structures of membrane proteins remain elusive due to difficulties in protein expression, purification and crystallization. Thus, accurate prediction of membrane protein topology can increase the understanding of membrane protein function. Here, we provide a brief review of the diverse computational methods for predicting membrane protein structure and function, including recent progress and essential bioinformatics tools. Our hope is that this review will be instructive to users studying membrane protein biology in their choice of appropriate bioinformatics methods.

27 citations

Journal ArticleDOI
TL;DR: This review can serve as a roadmap for future structural and dynamics studies of the ATG8 family members in health and disease and discuss the future perspectives within the field and the knowledge gaps.
Abstract: Autophagy is a conserved and essential intracellular mechanism for the removal of damaged components. Since autophagy deregulation is linked to different kinds of pathologies, it is fundamental to gain knowledge on the fine molecular and structural details related to the core proteins of the autophagy machinery. Among these, the family of human ATG8 proteins plays a central role in recruiting other proteins to the different membrane structures involved in the autophagic pathway. Several experimental structures are available for the members of the ATG8 family alone or in complex with their different biological partners, including disordered regions of proteins containing a short linear motif called LC3 interacting motif. Recently, the first structural details of the interaction of ATG8 proteins with biological membranes came into light. The availability of structural data for human ATG8 proteins has been paving the way for studies on their structure-function-dynamic relationship using biomolecular simulations. Experimental and computational structural biology can help to address several outstanding questions on the mechanism of human ATG8 proteins, including their specificity toward different interactors, their association with membranes, the heterogeneity of their conformational ensemble, and their regulation by post-translational modifications. We here summarize the main results collected so far and discuss the future perspectives within the field and the knowledge gaps. Our review can serve as a roadmap for future structural and dynamics studies of the ATG8 family members in health and disease.

27 citations

Journal ArticleDOI
TL;DR: This article provides a short synopsis of some of the recent advances in FM approaches as demonstrated in the recent Computational Assessment of Structure Prediction competition as well as recent trends and outlook for FM approaches in protein structure prediction.
Abstract: The most accurate characterizations of the structure of proteins are provided by structural biology experiments. However, because of the high cost and labor-intensive nature of the structural experiments, the gap between the number of protein sequences and solved structures is widening rapidly. Development of computational methods to accurately model protein structures from sequences is becoming increasingly important to the biological community. In this article, we highlight some important progress in the field of protein structure prediction, especially those related to free modeling (FM) methods that generate structure models without using homologous templates. We also provide a short synopsis of some of the recent advances in FM approaches as demonstrated in the recent Computational Assessment of Structure Prediction competition as well as recent trends and outlook for FM approaches in protein structure prediction.

27 citations


Network Information
Related Topics (5)
Protein structure
42.3K papers, 3M citations
92% related
Transcription (biology)
56.5K papers, 2.9M citations
85% related
RNA
111.6K papers, 5.4M citations
85% related
Peptide sequence
84.1K papers, 4.3M citations
84% related
Chromatin
50.7K papers, 2.7M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202335
202272
2021149
2020154
2019152
2018140