scispace - formally typeset
Search or ask a question
Topic

Structural biology

About: Structural biology is a research topic. Over the lifetime, 2206 publications have been published within this topic receiving 126070 citations.


Papers
More filters
Journal ArticleDOI
03 Sep 2009-Nature
TL;DR: The binding mode explains how Xpot can recognize all mature tRNAs in the cell and yet distinguish them from those that have not been properly processed, thus coupling tRNA export to quality control.
Abstract: Transfer RNAs are among the most ubiquitous molecules in cells, central to decoding information from messenger RNAs on translating ribosomes. In eukaryotic cells, tRNAs are actively transported from their site of synthesis in the nucleus to their site of function in the cytosol. This is mediated by a dedicated nucleo-cytoplasmic transport factor of the karyopherin-beta family (Xpot, also known as Los1 in Saccharomyces cerevisiae). Here we report the 3.2 A resolution structure of Schizosaccharomyces pombe Xpot in complex with tRNA and RanGTP, and the 3.1 A structure of unbound Xpot, revealing both nuclear and cytosolic snapshots of this transport factor. Xpot undergoes a large conformational change on binding cargo, wrapping around the tRNA and, in particular, binding to the tRNA 5' and 3' ends. The binding mode explains how Xpot can recognize all mature tRNAs in the cell and yet distinguish them from those that have not been properly processed, thus coupling tRNA export to quality control.

113 citations

Journal ArticleDOI
TL;DR: The combination of these variables detect 78% of proteins with an HTH motif, which is a substantial improvement over previous work based purely on structural templates and is comparable to more complex methods of identifying DNA-binding proteins.
Abstract: Robust methods to detect DNA-binding proteins from structures of unknown function are important for structural biology. This paper describes a method for identifying such proteins that (i) have a solvent accessible structural motif necessary for DNAbinding and (ii) a positive electrostatic potential in the region of the binding region. We focus on three structural motifs: helix–turn-helix (HTH), helix– hairpin–helix (HhH) and helix–loop–helix (HLH). We find that the combination of these variables detect 78% of proteins with an HTH motif, which is a substantial improvement over previous work based purely on structural templates and is comparable to more complex methods of identifying DNA-binding proteins. Similar true positive fractions are achieved for the HhH and HLH motifs. We see evidence of wide evolutionary diversity for DNA-binding proteins with an HTH motif, and much smaller diversity for those with an HhH or HLH motif.

113 citations

Journal ArticleDOI
TL;DR: This review will discuss examples of vertebrate membrane protein overexpression in mammalian cells using a variety of viral, constitutive or inducible expression systems.
Abstract: The number of structures of integral membrane proteins from higher eukaryotes is steadily increasing due to a number of innovative protein engineering and crystallization strategies devised over the last few years. However, it is sobering to reflect that these structures represent only a tiny proportion of the total number of membrane proteins encoded by a mammalian genome. In addition, the structures determined to date are of the most tractable membrane proteins, i.e., those that are expressed functionally and to high levels in yeast or in insect cells using the baculovirus expression system. However, some membrane proteins that are expressed inefficiently in these systems can be produced at sufficiently high levels in mammalian cells to allow structure determination. Mammalian expression systems are an under-used resource in structural biology and represent an effective way to produce fully functional membrane proteins for structural studies. This review will discuss examples of vertebrate membrane protein overexpression in mammalian cells using a variety of viral, constitutive or inducible expression systems.

113 citations

Journal ArticleDOI
TL;DR: This study presents the structure of IDO1 in complex with 24, a NLG919 analogue with potent activity and demonstrates that extensive hydrophobic interactions and the unique hydrogen bonding network contribute to the great potency of imidazoleisoindole derivatives.
Abstract: Indoleamine 2,3-dioxygenase 1 (IDO1), promoting immune escape of tumors, is a therapeutic target for the cancer immunotherapy. A number of IDO1 inhibitors have been identified, but only limited structural biology studies of IDO1 inhibitors are available to provide insights on the binding mechanism of IDO1. In this study, we present the structure of IDO1 in complex with 24, a NLG919 analogue with potent activity. The complex structure revealed the imidazole nitrogen atom of 24 to coordinate with the heme iron, and the imidazoleisoindole core situated in pocket A with the 1-cyclohexylethanol moiety extended to pocket B to interact with the surrounding residues. Most interestingly, 24 formed an extensive hydrogen bond network with IDO1, which is a distinct feature of IDO1/24 complex structure and is not observed in the other IDO1 complex structures. Further structure–activity relationship, UV spectra, and structural biology studies of several analogues of 24 demonstrated that extensive hydrophobic interactio...

112 citations


Network Information
Related Topics (5)
Protein structure
42.3K papers, 3M citations
92% related
Transcription (biology)
56.5K papers, 2.9M citations
85% related
RNA
111.6K papers, 5.4M citations
85% related
Peptide sequence
84.1K papers, 4.3M citations
84% related
Chromatin
50.7K papers, 2.7M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202335
202272
2021149
2020154
2019152
2018140