scispace - formally typeset
Search or ask a question
Topic

Structural health monitoring

About: Structural health monitoring is a research topic. Over the lifetime, 11727 publications have been published within this topic receiving 186231 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an acoustic emission (AE) phenomenon has many attributes that make it desirable as a structural health monitoring or non-destructive testing technique, including the capability to continuously monitor large structures using a sparse sensor array and with no dependency on defect size.

75 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the results of testing a system for the identification of structural damage based on fibre Bragg grating sensors, which use Bragg gratings as acoustic receivers of ultrasonic Lamb waves.
Abstract: Structural health monitoring has become a respected and established discipline in engineering. Health monitoring involves the development of autonomous systems for continuous monitoring, inspection and damage detection of structures with minimum involvement of labour. The ultimate goal of structural health monitoring is to increase reliability, improve safety, enable light-weight design and reduce maintenance costs for all kinds of structures. The identification of structural damage is therefore a key issue in structural health monitoring. The scope of this paper is to present the results of testing a system for the identification of structural damage based on fibre Bragg grating sensors. The basic idea is to use fibre Bragg gratings as acoustic receivers of ultrasonic Lamb waves. The layout of such a damage identification system is introduced and its theoretical limits are studied numerically and experimentally. The set-up for damage identification experiments is described and the results of initial experiments introducing damage detection based on the analysis of Lamb wave signals are presented. The results for the Bragg grating sensors are then compared to the results of established technology for Lamb wave detection using piezoceramic transducers.

75 citations

Journal ArticleDOI
12 Aug 2020-Sensors
TL;DR: The purpose of this review article is devoted to presenting a summary of the basic principles of various fiber-optic sensors, classification and principles of FOS, typical and functional fiber- optic sensors (FOSs), and the practical application status of the FOS technology in SHM of civil infrastructure.
Abstract: In recent years, with the development of materials science and architectural art, ensuring the safety of modern buildings is the top priority while they are developing toward higher, lighter, and more unique trends. Structural health monitoring (SHM) is currently an extremely effective and vital safeguard measure. Because of the fiber-optic sensor's (FOS) inherent distinctive advantages (such as small size, lightweight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability), a significant number of innovative sensing systems have been exploited in the civil engineering for SHM used in projects (including buildings, bridges, tunnels, etc.). The purpose of this review article is devoted to presenting a summary of the basic principles of various fiber-optic sensors, classification and principles of FOS, typical and functional fiber-optic sensors (FOSs), and the practical application status of the FOS technology in SHM of civil infrastructure.

75 citations

Journal ArticleDOI
TL;DR: In this paper, a distributed piezoelectric active sensor network for the detection of structural dynamic responses is proposed, based on the use of Multiway Principal Component Analysis (MPCA), Discrete Wavelet Transform (DWT), Squared Prediction Error (SPE) measures and Self-Organizing Maps (SOM) to detect and classify damages in mechanical structures.

75 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive procedure for the structural performance evaluation and life-cycle cost analysis of reinforced concrete highway bridges located in extreme chloride-laden environments is provided, where the effects of various influential parameters on the chloride diffusion process are examined and the changes in geometry and material properties of structural members are calculated over the entire life of the bridge.
Abstract: This article provides a comprehensive procedure for the structural performance evaluation and life-cycle cost (LCC) analysis of reinforced concrete highway bridges located in extreme chloride-laden environments. An integrated computational methodology is developed to simulate the chloride intrusion and to estimate the corrosion initiation time. The effects of various influential parameters on the chloride diffusion process are examined and the changes in geometry and material properties of structural members are calculated over the entire life of the bridge. In order to evaluate the global structural degradation due to the corrosion mechanisms, an inventory of bridges with different structural attributes are investigated. The extent of capacity loss is calculated using the moment-curvature and nonlinear static (pushover) analysis. Results of this study are then utilised to find the LCC of bridges. Different inspection and maintenance strategies are considered to minimise the total LCC, which includes the ...

74 citations


Network Information
Related Topics (5)
Finite element method
178.6K papers, 3M citations
82% related
Fracture mechanics
58.3K papers, 1.3M citations
79% related
Compressive strength
64.4K papers, 1M citations
78% related
Stress (mechanics)
69.5K papers, 1.1M citations
77% related
Numerical analysis
52.2K papers, 1.2M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023600
20221,374
2021776
2020746
2019803
2018708