scispace - formally typeset
Search or ask a question
Topic

Structural health monitoring

About: Structural health monitoring is a research topic. Over the lifetime, 11727 publications have been published within this topic receiving 186231 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This work demonstrates a most simple and robust approach for dynamic strain measurement using wavelength-scanning coherent optical time domain reflectometry (C-OTDR), based on laser current modulation and Rayleigh backscatter shift correlation.
Abstract: Distributed vibration sensing in optical fibers opened entirely new opportunities and penetrated various sectors from security to seismic monitoring. Here, we demonstrate a most simple and robust approach for dynamic strain measurement using wavelength-scanning coherent optical time domain reflectometry (C-OTDR). Our method is based on laser current modulation and Rayleigh backscatter shift correlation. As opposed to common single-wavelength phase demodulation techniques, also the algebraic sign of the strain change is retrieved. This is crucial for the intended applications in structural health monitoring and modal analysis. A linear strain response down to 47.5 pe and strain noise of 100 pe/√Hz is demonstrated for repetition rates in the kHz range. A field application of a vibrating bridge is presented. Our approach provides a cost-effective high-resolution method for structural vibration analysis and geophysical applications.

61 citations

Journal ArticleDOI
TL;DR: Two finite-element-based, full-field computational methods and algorithms for use in Structural Health Management (SHM) systems are reviewed and have demonstrated substantial promise for utilization in future SHM systems.
Abstract: Two finite element based computational methods, Smoothing Element Analysis (SEA) and the inverse Finite Element Method (iFEM), are reviewed, and examples of their use for structural health monitoring are discussed. Due to their versatility, robustness, and computational efficiency, the methods are well suited for real-time structural health monitoring of future space vehicles, large space structures, and habitats. The methods may be effectively employed to enable real-time processing of sensing information, specifically for identifying three-dimensional deformed structural shapes as well as the internal loads. In addition, they may be used in conjunction with evolutionary algorithms to design optimally distributed sensors. These computational tools have demonstrated substantial promise for utilization in future Structural Health Management (SHM) systems.

60 citations

Journal ArticleDOI
TL;DR: The built-in signal processing and imaging techniques employed by the software demonstrated the ability of the software to display the impact damage with relative ease in the face of temperature change.

60 citations

Proceedings ArticleDOI
16 Mar 2006
TL;DR: In this article, a chirplet matching pursuit algorithm was proposed to isolate individual reflections from defects in the structure and estimate the time-frequency centers, the modes and individual energies of the reflections, which would be used to locate and characterize defects.
Abstract: Signal processing algorithms for guided wave pulse echo-based SHM must be capable of isolating individual reflections from defects in the structure, if any, which could be overlapping and multimodal. In addition, they should be able to estimate the time-frequency centers, the modes and individual energies of the reflections, which would be used to locate and characterize defects. Finally, they should be computationally efficient and amenable to automated processing. This work addresses these issues with a new algorithm employing chirplet matching pursuits followed by a mode correlation check for single point sensors. Its theoretical advantages over conventional time-frequency representations in all aspects are elaborated and these are demonstrated using numerical simulations and experiments in isotropic plate structures. The issue of in-plane triangulation is then discussed and experimental work done to explore this issue is presented. This work concludes with a description of how the algorithm can be extended to composite plate structures.

60 citations

Journal ArticleDOI
TL;DR: In this paper, a series of parametric studies using the 3D coupled field finite element method (FEM) on all properties of materials involved in the lead zirconate titanate (PZT) structure interaction of the EMI technique, to investigate their effect on the admittance signatures acquired.
Abstract: The application of smart materials in various fields of engineering has recently become increasingly popular. For instance, the high frequency based electromechanical impedance (EMI) technique employing smart piezoelectric materials is found to be versatile in structural health monitoring (SHM). Thus far, considerable efforts have been made to study and improve the technique. Various theoretical models of the EMI technique have been proposed in an attempt to better understand its behavior. So far, the three-dimensional (3D) coupled field finite element (FE) model has proved to be the most accurate. However, large discrepancies between the results of the FE model and experimental tests, especially in terms of the slope and magnitude of the admittance signatures, continue to exist and are yet to be resolved. This paper presents a series of parametric studies using the 3D coupled field finite element method (FEM) on all properties of materials involved in the lead zirconate titanate (PZT) structure interaction of the EMI technique, to investigate their effect on the admittance signatures acquired. FE model updating is then performed by adjusting the parameters to match the experimental results. One of the main reasons for the lower accuracy, especially in terms of magnitude and slope, of previous FE models is the difficulty in determining the damping related coefficients and the stiffness of the bonding layer. In this study, using the hysteretic damping model in place of Rayleigh damping, which is used by most researchers in this field, and updated bonding stiffness, an improved and more accurate FE model is achieved. The results of this paper are expected to be useful for future study of the subject area in terms of research and application, such as modeling, design and optimization.

60 citations


Network Information
Related Topics (5)
Finite element method
178.6K papers, 3M citations
82% related
Fracture mechanics
58.3K papers, 1.3M citations
79% related
Compressive strength
64.4K papers, 1M citations
78% related
Stress (mechanics)
69.5K papers, 1.1M citations
77% related
Numerical analysis
52.2K papers, 1.2M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023600
20221,374
2021776
2020746
2019803
2018708