scispace - formally typeset
Search or ask a question
Topic

Structural health monitoring

About: Structural health monitoring is a research topic. Over the lifetime, 11727 publications have been published within this topic receiving 186231 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Practical DIC sampling rates were used to accurately monitor and capture the dynamic response of bridges, which shows a high potential for using DIC for larger structural health monitoring applications and future reconnaissance works.

58 citations

Journal ArticleDOI
19 Jan 2018-Sensors
TL;DR: A new way for structural behavior prediction based on data processing is provided, which can lay a foundation for the early warning of bridge health monitoring system based on sensor data using sensing technology.
Abstract: Bridges are an essential part of the ground transportation system. Health monitoring is fundamentally important for the safety and service life of bridges. A large amount of structural information is obtained from various sensors using sensing technology, and the data processing has become a challenging issue. To improve the prediction accuracy of bridge structure deformation based on data mining and to accurately evaluate the time-varying characteristics of bridge structure performance evolution, this paper proposes a new method for bridge structure deformation prediction, which integrates the Kalman filter, autoregressive integrated moving average model (ARIMA), and generalized autoregressive conditional heteroskedasticity (GARCH). Firstly, the raw deformation data is directly pre-processed using the Kalman filter to reduce the noise. After that, the linear recursive ARIMA model is established to analyze and predict the structure deformation. Finally, the nonlinear recursive GARCH model is introduced to further improve the accuracy of the prediction. Simulation results based on measured sensor data from the Global Navigation Satellite System (GNSS) deformation monitoring system demonstrated that: (1) the Kalman filter is capable of denoising the bridge deformation monitoring data; (2) the prediction accuracy of the proposed Kalman-ARIMA-GARCH model is satisfactory, where the mean absolute error increases only from 3.402 mm to 5.847 mm with the increment of the prediction step; and (3) in comparision to the Kalman-ARIMA model, the Kalman-ARIMA-GARCH model results in superior prediction accuracy as it includes partial nonlinear characteristics (heteroscedasticity); the mean absolute error of five-step prediction using the proposed model is improved by 10.12%. This paper provides a new way for structural behavior prediction based on data processing, which can lay a foundation for the early warning of bridge health monitoring system based on sensor data using sensing technology.

58 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the application of the inverse finite element method (iFEM) to a capsize bulk carrier and investigated an appropriate sensor placement configuration for better structural health monitoring of the vessel.

58 citations

Journal ArticleDOI
TL;DR: This work proposes a methodology to perform Structural Health Monitoring leveraging on the inverse Finite Element Method (iFEM), which enables the reconstruction of the strain field of a structure by means of a number of strain sensors without requiring any a-priori knowledge of the boundary load conditions.

58 citations

Journal ArticleDOI
TL;DR: Use of a sub-pixel accuracy marker extraction algorithm to construct virtual sensors in the spatial domain, embedding dynamic marker linking within a tracking-by-correspondence paradigm that offers benefits in computational efficiency and registration accuracy over traditional tracking- by-searching systems and validation of virtual visual sensor in the context of a structural health monitoring application are presented.
Abstract: Wireless sensor networks are being increasingly accepted as an effective tool for structural health monitoring. The ability to deploy a wireless array of sensors efficiently and effectively is a key factor in structural health monitoring. Sensor installation and management can be difficult in practice for a variety of reasons: a hostile environment, high labour costs and bandwidth limitations. We present and evaluate a proof-of-concept application of virtual visual sensors to the well-known engineering problem of the cantilever beam, as a convenient physical sensor substitute for certain problems and environments. We demonstrate the effectiveness of virtual visual sensors as a means to achieve non-destructive evaluation. Major benefits of virtual visual sensors are its non-invasive nature, ease of installation and cost-effectiveness. The novelty of virtual visual sensors lies in the combination of marker extraction with visual tracking realised by modern computer vision algorithms. We demonstrate that by deploying a collection of virtual visual sensors on an oscillating structure, its modal shapes and frequencies can be readily extracted from a sequence of video images. Subsequently, we perform damage detection and localisation by means of a wavelet-based analysis. The contributions of this article are as follows: (1) use of a sub-pixel accuracy marker extraction algorithm to construct virtual sensors in the spatial domain, (2) embedding dynamic marker linking within a tracking-by-correspondence paradigm that offers benefits in computational efficiency and registration accuracy over traditional tracking-by-searching systems and (3) validation of virtual visual sensors in the context of a structural health monitoring application.

58 citations


Network Information
Related Topics (5)
Finite element method
178.6K papers, 3M citations
82% related
Fracture mechanics
58.3K papers, 1.3M citations
79% related
Compressive strength
64.4K papers, 1M citations
78% related
Stress (mechanics)
69.5K papers, 1.1M citations
77% related
Numerical analysis
52.2K papers, 1.2M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023600
20221,374
2021776
2020746
2019803
2018708