Topic
Structural isomer
About: Structural isomer is a research topic. Over the lifetime, 1246 publications have been published within this topic receiving 19087 citations. The topic is also known as: constitutional isomer & metamer.
Papers published on a yearly basis
Papers
More filters
[...]
TL;DR: The mixture of conjugated diene hydroperoxide isomers obtained from autoxidation of methyl linoleate was separated by high performance liquid chromatography (HPLC) and provides a rapid method for their analysis.
Abstract: The mixture of conjugated diene hydroperoxide isomers obtained from autoxidation of methyl linoleate was separated by high performance liquid chromatography (HPLC). Four major isomers were obtained from adsorption chromatography and identified as the 9 and 13 positional isomers having thetrans-trans andcis-trans configurations. The latter geometrical isomers have thetrans double bond adjacent to the hydroperoxide group. The hydroxy compounds (methyl hydroxylinoleates) obtained from the hydroperoxides by NaBH4 reduction were similarly separated but with improved resolution. This is the first instance of the complete separation of these compounds and provides a rapid method for their analysis. Unlike adsorption chromatography, reversed-phase chromatography separates the mixtures only according to the geometrical isomerism of the double bonds and not according to the position of the hydroxy or hydroperoxide function.
336 citations
[...]
TL;DR: The potential of the application of silverion impregnated high-performance liquid chromatography to the separation of complex mixtures of conjugated linolenic acid (CLA) isomers present in commercial CLA sources and foods and in biological specimens was demonstrated.
Abstract: This is the first report of the application of silverion impregnated high-performance liquid chromatography (Ag+-HPLC) to the separation of complex mixtures of conjugated linolenic acid (CLA) isomers present in commercial CLA sources and foods and in biological specimens. This method showed a clear separation of CLA isomers into three groups related to their trans,trans, cis,trans or trans,cis, and cis,cis configuration of the conjugated double-bound system. In addition, this method separated within each geometrical isomeric group. Following Ag+-HPLC isolation, gas chromatography (GC)-electron impact mass spectrometry, and GC-direct deposition-Fourier transformed infrared spectroscopy were used to confirm the identity of two major positional isomers in the cis/trans region, i.e., Δ8,10- and Δ11,13-octadecadienoic acid, which had not been chromatographically resolved previously, Furthermore, the potential of this method was demonstrated by showing different Ag+-HPLC profiles exhibiting patterns of isomeric distributions for biological specimens from animals fed a diet containing a commerical CLA preparation, as well as for a commerical cheese product.
247 citations
[...]
TL;DR: In this paper, an adsorption study of hexane and xylene isomers mixtures was addressed in a rigid zirconium terephthalate UiO-66 (UiO for University of Oslo) with octahedral and tetrahedral cavities of free diameter close to 1.1nm and 0.8nm, respectively.
Abstract: An adsorption study of hexane and xylene isomers mixtures was addressed in a rigid zirconium terephthalate UiO-66 (UiO for University of Oslo) with octahedral and tetrahedral cavities of free diameter close to 1.1 nm and 0.8 nm, respectively. Multicomponent equimolar breakthrough experiments show that the adsorption hierarchy of structural isomers in UiO-66 is opposite to the one observed in conventional adsorbents. For hexane isomers, it was found that the amount adsorbed increases with the degree of branching, being 2,2-dimethylbutane (22DMB) and 2,3-dimethylbutane (23DMB) the more retained molecules. Regarding the xylene isomers, the results show that the adsorption of the bulkier ortho-xylene (oX) is favoured compared to its homologues. The structural similarity between MOF UiO-66 and zeolite MCM-22 suggests that the reverse shape selectivity observed in the adsorption of hexane and xylene isomers might be attributed to the rotational freedom of the molecules inside the small cavities.
217 citations
[...]
TL;DR: Competition experiments were used to determine that the 4-OH of a 2-deoxy-2-azidoglucose derivative is more reactive than that of the corresponding N-phthalimido glucose derivative which, in turn, is more easily glycosylated than the N-acetyl derivative.
Abstract: Competition experiments were used to determine that the 4-OH of a 2-deoxy-2-azidoglucose derivative is more reactive than that of the corresponding N-phthalimido glucose derivative which, in turn, is more easily glycosylated than the N-acetyl derivative. Glycosylation of the 4-OH groups of the N,N-diacetyl and N-acetyl-N-benzyl glucosamine was also found to be superior to that of the simple N-acetyl substance. The 3-O-picolinyl ether of a 4,6-O-benzylidene-protected N-acetylglucosamine was shown to have a strong intramolecular hydrogen bond to the adjacent acetamide group. This interaction does not persist in the 3-O-picolinyl-6-O-benzyl N-acetylglucosamine derivative, owing to a probable competing hydrogen bond between the 4-OH and the picolinyl ether. However, in the 3-O-picolinyl-4-O-benzyl N-acetylglucosamine regioisomer the picolinyl-acetamide hydrogen bond persists and leads to an enhancement of reactivity of the 6-OH, over and above that in the corresponding 3-O-benzyl ether, due to disruption of the typical intermolecular amide hydrogen bonding scheme. It is demonstrated that the picolinyl ether is readily removed by hydrogenolysis at atmospheric pressure and room temperature.
180 citations
[...]
TL;DR: A pair of structural isomers, Au38T and Au38Q, are reported, as evidenced using electrospray ionization mass spectrometry,X-ray photoelectron spectroscopy, thermogravimetric analysis and indisputable single-crystal X-ray crystallography.
Abstract: Revealing structural isomerism in nanoparticles remains a largely unresolved task. Here, the authors use several techniques, including single-crystal X-ray crystallography, to characterize two structural isomers of Au38, and report their different optical and catalytic properties and differences in stability.
175 citations