Topic
Structure from motion
About: Structure from motion is a research topic. Over the lifetime, 5640 publications have been published within this topic receiving 221120 citations. The topic is also known as: SfM.
Papers published on a yearly basis
Papers
More filters
[...]
TL;DR: New results are derived on the minimum number of landmarks needed to obtain a solution, and algorithms are presented for computing these minimum-landmark solutions in closed form that provide the basis for an automatic system that can solve the Location Determination Problem under difficult viewing.
Abstract: A new paradigm, Random Sample Consensus (RANSAC), for fitting a model to experimental data is introduced. RANSAC is capable of interpreting/smoothing data containing a significant percentage of gross errors, and is thus ideally suited for applications in automated image analysis where interpretation is based on the data provided by error-prone feature detectors. A major portion of this paper describes the application of RANSAC to the Location Determination Problem (LDP): Given an image depicting a set of landmarks with known locations, determine that point in space from which the image was obtained. In response to a RANSAC requirement, new results are derived on the minimum number of landmarks needed to obtain a solution, and algorithms are presented for computing these minimum-landmark solutions in closed form. These results provide the basis for an automatic system that can solve the LDP under difficult viewing
20,503 citations
Book•
[...]
TL;DR: In this article, the authors provide comprehensive background material and explain how to apply the methods and implement the algorithms directly in a unified framework, including geometric principles and how to represent objects algebraically so they can be computed and applied.
Abstract: From the Publisher:
A basic problem in computer vision is to understand the structure of a real world scene given several images of it. Recent major developments in the theory and practice of scene reconstruction are described in detail in a unified framework. The book covers the geometric principles and how to represent objects algebraically so they can be computed and applied. The authors provide comprehensive background material and explain how to apply the methods and implement the algorithms directly.
15,158 citations
[...]
TL;DR: This paper proposes a very fast binary descriptor based on BRIEF, called ORB, which is rotation invariant and resistant to noise, and demonstrates through experiments how ORB is at two orders of magnitude faster than SIFT, while performing as well in many situations.
Abstract: Feature matching is at the base of many computer vision problems, such as object recognition or structure from motion. Current methods rely on costly descriptors for detection and matching. In this paper, we propose a very fast binary descriptor based on BRIEF, called ORB, which is rotation invariant and resistant to noise. We demonstrate through experiments how ORB is at two orders of magnitude faster than SIFT, while performing as well in many situations. The efficiency is tested on several real-world applications, including object detection and patch-tracking on a smart phone.
6,644 citations
[...]
TL;DR: The kinetic-geometric model for visual vector analysis originally developed in the study of perception of motion combinations of the mechanical type was applied to biological motion patterns and the results turned out to be highly positive.
Abstract: This paper reports the first phase of a research program on visual perception of motion patterns characteristic of living organisms in locomotion. Such motion patterns in animals and men are termed here as biological motion. They are characterized by a far higher degree of complexity than the patterns of simple mechanical motions usually studied in our laboratories. In everyday perceptions, the visual information from biological motion and from the corresponding figurative contour patterns (the shape of the body) are intermingled. A method for studying information from the motion pattern per se without interference with the form aspect was devised. In short, the motion of the living body was represented by a few bright spots describing the motions of the main joints. It is found that 10–12 such elements in adequate motion combinations in proximal stimulus evoke a compelling impression of human walking, running, dancing, etc. The kinetic-geometric model for visual vector analysis originally developed in the study of perception of motion combinations of the mechanical type was applied to these biological motion patterns. The validity of this model in the present context was experimentally tested and the results turned out to be highly positive.
3,912 citations
[...]
TL;DR: In this article, the first stage consists of linear filters that are oriented in space-time and tuned in spatial frequency, and the outputs of quadrature pairs of such filters are squared and summed to give a measure of motion energy.
Abstract: A motion sequence may be represented as a single pattern in x–y–t space; a velocity of motion corresponds to a three-dimensional orientation in this space. Motion sinformation can be extracted by a system that responds to the oriented spatiotemporal energy. We discuss a class of models for human motion mechanisms in which the first stage consists of linear filters that are oriented in space-time and tuned in spatial frequency. The outputs of quadrature pairs of such filters are squared and summed to give a measure of motion energy. These responses are then fed into an opponent stage. Energy models can be built from elements that are consistent with known physiology and psychophysics, and they permit a qualitative understanding of a variety of motion phenomena.
3,379 citations