Topic

# Structured support vector machine

About: Structured support vector machine is a research topic. Over the lifetime, 5551 publications have been published within this topic receiving 261083 citations.

##### Papers published on a yearly basis

##### Papers

More filters

••

[...]

TL;DR: Issues such as solving SVM optimization problems theoretical convergence multiclass classification probability estimates and parameter selection are discussed in detail.

Abstract: LIBSVM is a library for Support Vector Machines (SVMs). We have been actively developing this package since the year 2000. The goal is to help users to easily apply SVM to their applications. LIBSVM has gained wide popularity in machine learning and many other areas. In this article, we present all implementation details of LIBSVM. Issues such as solving SVM optimization problems theoretical convergence multiclass classification probability estimates and parameter selection are discussed in detail.

37,868 citations

••

[...]

Alcatel-Lucent

^{1}TL;DR: There are several arguments which support the observed high accuracy of SVMs, which are reviewed and numerous examples and proofs of most of the key theorems are given.

Abstract: The tutorial starts with an overview of the concepts of VC dimension and structural risk minimization. We then describe linear Support Vector Machines (SVMs) for separable and non-separable data, working through a non-trivial example in detail. We describe a mechanical analogy, and discuss when SVM solutions are unique and when they are global. We describe how support vector training can be practically implemented, and discuss in detail the kernel mapping technique which is used to construct SVM solutions which are nonlinear in the data. We show how Support Vector machines can have very large (even infinite) VC dimension by computing the VC dimension for homogeneous polynomial and Gaussian radial basis function kernels. While very high VC dimension would normally bode ill for generalization performance, and while at present there exists no theory which shows that good generalization performance is guaranteed for SVMs, there are several arguments which support the observed high accuracy of SVMs, which we review. Results of some experiments which were inspired by these arguments are also presented. We give numerous examples and proofs of most of the key theorems. There is new material, and I hope that the reader will find that even old material is cast in a fresh light.

14,909 citations

••

[...]

TL;DR: This tutorial gives an overview of the basic ideas underlying Support Vector (SV) machines for function estimation, and includes a summary of currently used algorithms for training SV machines, covering both the quadratic programming part and advanced methods for dealing with large datasets.

Abstract: In this tutorial we give an overview of the basic ideas underlying Support Vector (SV) machines for function estimation. Furthermore, we include a summary of currently used algorithms for training SV machines, covering both the quadratic (or convex) programming part and advanced methods for dealing with large datasets. Finally, we mention some modifications and extensions that have been applied to the standard SV algorithm, and discuss the aspect of regularization from a SV perspective.

9,105 citations

••

[...]

TL;DR: A least squares version for support vector machine (SVM) classifiers that follows from solving a set of linear equations, instead of quadratic programming for classical SVM's.

Abstract: In this letter we discuss a least squares version for support vector machine (SVM) classifiers. Due to equality type constraints in the formulation, the solution follows from solving a set of linear equations, instead of quadratic programming for classical SVM‘s. The approach is illustrated on a two-spiral benchmark classification problem.

7,819 citations

[...]

TL;DR: A simple procedure is proposed, which usually gives reasonable results and is suitable for beginners who are not familiar with SVM.

Abstract: Support vector machine (SVM) is a popular technique for classication. However, beginners who are not familiar with SVM often get unsatisfactory results since they miss some easy but signicant steps. In this guide, we propose a simple procedure, which usually gives reasonable results.

6,857 citations