scispace - formally typeset
Search or ask a question
Topic

Styrene-butadiene

About: Styrene-butadiene is a research topic. Over the lifetime, 5568 publications have been published within this topic receiving 62099 citations. The topic is also known as: styrene-butadiene rubber & SBR.


Papers
More filters
Journal ArticleDOI
G. Khanarian1
TL;DR: In this paper, a study of increasing the toughness of COC while maintaining its optical transparency is presented, which takes into account the refractive index of the elastomer, the particle size distribution and volume fraction of the Elastomer.
Abstract: A study is presented of increasing the toughness of Cyclic Olefin Copolymer (COC) while maintaining its optical transparency. The COC consists of a random copolymer of ethylene and norbornene, and the impact modifiers consist of thermoplastic elastomers. It is shown that several requirements must be satisfied, namely: for toughening there is an optimum finite particle size, but in order to minimize light scattering the particles have to be as small as possible. In addition, the refractive index of the elastomer must be closely matched to COC over the visible wavelength range and use temperature. Also for toughening, there are additional requirements of the adhesion of the elastomer to COC and high molecular weight. It is found that styrene butadiene styrene (SBS) is the most effective elastomer in toughening COC while maintaining optical transparency. It is also found that the addition of an index matched styrene-ethylene-butylene-styrene (SEBS) copolymer as a compatibilizer to the SBS elastomer is beneficial in increasing the toughness and lowering the optical haze. Finally, light scattering calculations are presented based on the Rayleigh Debye model to calculate the optical haze and transmission of these blends. These calculations take into account the refractive index of COC and the elastomer, the particle size distribution and volume fraction of the elastomer. It is shown that there is reasonable agreement between calculation and experimental results. It is possible to increase the toughness of COC to greater than 50 J/m (Notched Izod) while keeping the optical haze to below 5% with an elastomer loading of 5% (w/w). We also identify opaque blends of COC with a toughness of greater than 500 J/m with an elastomer loading of 20% (w/w).

46 citations

Journal ArticleDOI
01 May 2000-Polymer
TL;DR: In this paper, a trifunctional thiol and an acylphosphine oxide photoinitiator were used to crosslink a thermoplastic elastomer, polystyrene block -polybutadiene-block -polystyrene (SBS) with a high vinyl content.

46 citations

Journal ArticleDOI
TL;DR: In this article, the interaction between GO and AMICl molecules as well as the effects of GO-IL on the mechanical properties, thermal conductivity and solvent resistance of SBR were thoroughly studied.
Abstract: Ionic liquid 1-allyl-3-methyl-imidazolium chloride (AMICl) is used to fine-tune the surface properties of graphene oxide (GO) sheets for fabricating ionic liquid functionalized GO (GO-IL)/styrene-butadiene rubber (SBR) nanocomposites. The morphology and structure of GO-IL are characterized using atomic force microscope, X-ray diffraction, differential scanning calorimetry, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, UV-vis spectra and Raman spectra. The interaction between GO and AMICl molecules as well as the effects of GO-IL on the mechanical properties, thermal conductivity and solvent resistance of SBR are thoroughly studied. It is found that AMICl molecules can interact with GO via the combination of hydrogen bond and cation–π interaction. GO-IL can be well-dispersed in the SBR matrix, as confirmed by X-ray diffraction and scanning electron microscope. Therefore, the SBR nanocomposites incorporating GO-IL exhibit greatly enhanced performance. The tensile strength, tear strength, thermal conductivity and solvent resistance of GO-IL/SBR nanocomposite with 5 parts per hundred rubber GO-IL are increased by 505, 362, 34 and 31%, respectively, compared with neat SBR. This method provides a new insight into the fabrication of multifunctional GO-based rubber composites. Copyright © 2016 John Wiley & Sons, Ltd.

46 citations

Journal ArticleDOI
TL;DR: In this paper, the photo-oxidation of styrene-butadiene copolymer (SBR) was investigated for comparison with the photodynamic properties of various polybutadienes (BR).

46 citations

Patent
23 Dec 1999
TL;DR: In this article, the authors defined block copolymers as blocks with at least two hard blocks S1 and S2 made from vinyl aromatic monomers and, between these, at least one random soft block B/S made from dienes.
Abstract: Block copolymers comprise at least two hard blocks S1 and S2 made from vinyl aromatic monomers and, between these, at least ore random soft block B/S made from vinyl aromatic monomers and from dienes, where the proportion of the hard blocks is above 40% by weight, based on the total block copolymer, wherein the 1,2-vinyl content in the soft block B/S is less than 20%.

46 citations


Network Information
Related Topics (5)
Copolymer
84K papers, 1.2M citations
87% related
Polymer
131.4K papers, 2.6M citations
87% related
Nanocomposite
71.3K papers, 1.9M citations
87% related
Polymerization
147.9K papers, 2.7M citations
85% related
Differential scanning calorimetry
50.3K papers, 1.1M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023118
2022229
2021159
2020239
2019313
2018348