scispace - formally typeset
Search or ask a question
Topic

Subcooling

About: Subcooling is a research topic. Over the lifetime, 6150 publications have been published within this topic receiving 99125 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the numerical simulation study on the growth of the bubble in the transient pool boiling using moving particle semi-implicit with meshless advection using flow-directional local grid (MPS-MAFL) method is presented.

44 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the interfacial behavior and heat transfer mechanisms associated with flow boiling of R-134a in a micro-channel test module and found that, unlike macro-channel flows, where flow regimes can be clearly demarcated, flow regimes in micro-channels are associated with transient fluctuations that are induced by flow instabilities.

44 citations

Journal ArticleDOI
TL;DR: In this article, a novel regenerative ejector refrigeration cycle was described, which uses an auxiliary jet pump and a conventional regenerator to enhance the performance of the novel cycle with the refrigerant R141b.
Abstract: There has been a demand for developments of the ejector refrigeration systems using low grade thermal energy, such as solar energy and waste heat. In this paper, a novel regenerative ejector refrigeration cycle was described, which uses an auxiliary jet pump and a conventional regenerator to enhance the performance of the novel cycle. The theoretical analysis on the performance characteristics was carried out for the novel cycle with the refrigerant R141b. Compared with the conventional cycle, the simulation results show that the coefficient of performance (COP) of the novel cycle increases, respectively, by from 9.3 to 12.1% when generating temperature is in a range of 80–160 °C, the condensing temperature is in a range of 35–45 °C and the evaporating temperature is fixed at 10 °C. Especially due to the enhanced regeneration with increasing the pump outlet pressure, the improvement of COP of the novel cycle is approached to 17.8% compared with that in the conventional cycle under the operating condition that generating temperature is 100 °C, condensing temperature is 40 °C and evaporating temperature is 10 °C. Therefore, the characteristics of the novel cycle performance show its promise in using low grade thermal energy for the ejector refrigeration system.

44 citations


Network Information
Related Topics (5)
Heat transfer
181.7K papers, 2.9M citations
92% related
Reynolds number
68.4K papers, 1.6M citations
84% related
Laminar flow
56K papers, 1.2M citations
81% related
Thermal conductivity
72.4K papers, 1.4M citations
79% related
Turbulence
112.1K papers, 2.7M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023267
2022434
2021310
2020268
2019282
2018287