scispace - formally typeset
Search or ask a question
Topic

Substitute natural gas

About: Substitute natural gas is a research topic. Over the lifetime, 1216 publications have been published within this topic receiving 23604 citations. The topic is also known as: synthetic natural gas.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a 10% Ru/γ-Al2O3/monolith was used as a model for the design of a catalytic heat exchanger for a renewable energy storage application.
Abstract: CO2 methanation has been evaluated as a means of storing intermittent renewable energy in the form of synthetic natural gas. A range of process parameters suitable for the target application (4720 h−1 to 84,000 h−1 and from 160 °C to 320 °C) have been investigated at 1 bar and H2/CO2 = 4 over a 10% Ru/γ-Al2O3 catalyst. Thermodynamic equilibrium was reached at T ≈ 280 °C at a GHSV of 4720 h−1. Cyclic and thermal stability tests specific to a renewable energy storage application have also been conducted. The catalyst showed no sign of deactivation after 8 start-up/shut-down cycles (from 217 °C to RT) and for total time on stream of 72 h, respectively. In addition, TGA-DSC was employed to investigate adsorption of reactants and suggest implications on the mechanism of reaction. Cyclic TGA-DSC studies at 265 °C in CO2 and H2, being introduced consecutively, suggest a high degree of short term stability of the Ru catalyst, although it was found that CO2 chemisorption and hydrogenation activity was lowered by a magnitude of 40% after the first cycle. Stable performance was achieved for the following 19 cycles. The CO2 uptake after the first cycle was mostly restored when using a H2-pre-treatment at 320 °C between each cycle, which indicated that the previous drop in performance was not linked to an irreversible form of deactivation (sintering, permanent poisoning, etc.). CO chemisorption on powder Ru/γ-Al2O3 was used to identify metal sintering as a mechanism of deactivation at temperatures higher than 320 °C. A 10% Ru/γ-Al2O3//monolith has been investigated as a model for the design of a catalytic heat exchanger. Excellent selectivity to methane and CO2 conversions under low space-velocity conditions were achieved at low hydrogenation temperatures (T = 240 °C). The use of monoliths demonstrates the possibility for new reactor designs using wash-coated heat exchangers to manage the exotherm and prevent deactivation due to high temperatures.

163 citations

Journal ArticleDOI
TL;DR: In this article, the potential of P2G when combined with gas seasonal storage operation accounting for the two networks' characteristics and constraints (including the amount of hydrogen that can be blended with NG under different gas network conditions).
Abstract: The power-to-gas (P2G) process, whereby excess renewable electrical energy is used to form hydrogen and/or synthetic natural gas (NG) that are injected, transported, and stored in the gas network, has the prospect to become an important flexibility option for the seasonal storage of low-carbon electricity. This study is the first to model and assess the potential of P2G when combined with gas seasonal storage operation accounting for the two networks' characteristics and constraints (including the amount of hydrogen that can be blended with NG under different gas network conditions). Power system operation with P2G is analysed via a two-stage optimisation based on DC power flow to assess the gas production from otherwise curtailed renewables, also considering impact of P2G on short-term and long-term gas prices. Additionally, impact of P2G on gas network operation and its potentially required re-dispatch are evaluated with a steady-state gas flow model. Case studies conducted on the Great Britain gas and electrical transmission networks quantify benefits and limitations of the integrated usage of P2G with seasonal gas storage under different scenarios. The proposed model thus sets the fundamentals for further development of this emerging technology as a seasonal storage option in low-carbon power systems.

160 citations

Journal ArticleDOI
TL;DR: In this paper, Mesoporous Al2O3-ZrO2 modified Ni catalysts were prepared via a single-step epoxide-driven sol-gel method for CO2 methanation and almost 100% selectivity of CH4 with 77% CO2 conversion were obtained at a lower temperature of 300°C, and no catalyst deactivation was observed in 100 h.
Abstract: Converting carbon dioxide to value-added chemicals has been attracted much attention, whereas direct hydrogenation of CO2 to synthetic natural gas (SNG) at a lower temperature remains a big challenge. Mesoporous Al2O3-ZrO2 modified Ni catalysts were prepared via a single-step epoxide-driven sol-gel method for CO2 methanation. Almost 100% selectivity of CH4 with 77% CO2 conversion were obtained at a lower temperature of 300 °C, and no catalyst deactivation was observed in 100 h. Different characterization methods including N2 adsorption-desorption, H2-TPR, H2-TPD, XRD, XPS, and TEM were combined together to explore the interaction of Ni-ZrO2 and Al2O3-ZrO2. Incorporation of ZrO2 into Ni/Al2O3 weakened the Ni-Al2O3 interaction via the combination of Al2O3-ZrO2 solid solution, promoting the reduction and dispersion of NiO phase. The adding of higher Zr loading increased the amount of active metallic nickel sites and oxygen vacancies on the composite support, improving obviously the lower temperature catalytic activity and CH4 selectivity. Higher Ni species loading further resulted in the formation of active Ni sites and improved the low-temperature CO2 methanation performance. Moreover, the enhanced stability of the Al2O3-ZrO2 support and oxygen vacancies provided by the ZrO2 promoter could help to promote the catalytic stability.

157 citations

Patent
William L Slater1
03 Aug 1960

156 citations

Journal ArticleDOI
TL;DR: In this article, the authors focus on a power-to-gas pathway, where electricity is first converted in a water electrolyzer into hydrogen, which is then synthetized with carbon dioxide to produce synthetic natural gas.

147 citations


Network Information
Related Topics (5)
Combustion
172.3K papers, 1.9M citations
77% related
Renewable energy
87.6K papers, 1.6M citations
75% related
Energy storage
65.6K papers, 1.1M citations
71% related
Mesoporous material
43.7K papers, 1.3M citations
71% related
Catalysis
400.9K papers, 8.7M citations
70% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202333
202270
202151
202054
201973
201852