scispace - formally typeset
Search or ask a question
Topic

Substrate (chemistry)

About: Substrate (chemistry) is a research topic. Over the lifetime, 35902 publications have been published within this topic receiving 740722 citations. The topic is also known as: enzyme substrate.


Papers
More filters
Journal ArticleDOI
08 Jan 1988-Science
TL;DR: Kinetic analyses show that high salt concentrations facilitate substrate binding in the absence of the protein, probably by decreasing the repulsion between the polyanionic enzyme and substrate RNAs, and also slow product release and enzyme turnover.
Abstract: The Bacillus subtilis ribonuclease P consists of a protein and an RNA. At high ionic strength the reaction is protein-independent; the RNA alone is capable of cleaving precursor transfer RNA, but the turnover is slow. Kinetic analyses show that high salt concentrations facilitate substrate binding in the absence of the protein, probably by decreasing the repulsion between the polyanionic enzyme and substrate RNAs, and also slow product release and enzyme turnover. It is proposed that the ribonuclease P protein, which is small and basic, provides a local pool of counter-ions that facilitates substrate binding without interfering with rapid product release.

206 citations

Journal ArticleDOI
12 Jun 1987-Science
TL;DR: Application of the method to the diffusion of the superoxide anion to the protein superoxide dismutase revealed that the electric field of the enzyme enhances the association rate of the anion by a factor of 30 or more.
Abstract: Computer simulations of the diffusion of a substrate to an enzyme active site were performed. They included the detailed shape of the protein and an accurate description of its electrostatic potential. Application of the method to the diffusion of the superoxide anion to the protein superoxide dismutase revealed that the electric field of the enzyme enhances the association rate of the anion by a factor of 30 or more. Calculated changes in the association rate as a function of ionic strength and amino acid modification paralleled the observed behavior. Design principles of superoxide dismutase are considered with respect to insights provided by the simulations. A possible means of enhancing the enzyme turnover rate through site-directed mutagenesis is proposed.

206 citations

Journal ArticleDOI
TL;DR: In this article, a pilot-scale process of protein extraction has been developed to remove major anti-nutritional compounds, easy to scale-up and using recyclable solvents.

206 citations

Journal ArticleDOI
TL;DR: The three-dimensional structure of TIM complexed with a reactive intermediate analogue, phosphoglycolohydroxamate (PGH), is solved at 1.9-A resolution and the structure suggests that His-95 is neutral rather than cationic in the ground state and therefore would have to function as an imidazole acid instead of the usualImidazolium.
Abstract: The glycolytic enzyme triosephosphate isomerase (TIM) catalyzes the interconversion of the three-carbon sugars dihydroxyacetone phosphate (DHAP) and D-glyceraldehyde 3-phosphate (GAP) at a rate limited by the diffusion of substrate to the enzyme. We have solved the three-dimensional structure of TIM complexed with a reactive intermediate analogue, phosphoglycolohydroxamate (PGH), at 1.9-A resolution and have refined the structure to an R-factor of 18%. Analysis of the refined structure reveals the geometry of the active-site residues and the interactions they make with the inhibitor and, by analogy, the substrates. The structure is consistent with an acid-base mechanism in which the carboxylate of Glu-165 abstracts a proton from carbon while His-95 donates a proton to oxygen to form an enediol (or enediolate) intermediate. The conformation of the bound substrate stereoelectronically favors proton transfer from substrate carbon to the syn orbital of Glu-165. The crystal structure suggests that His-95 is neutral rather than cationic in the ground state and therefore would have to function as an imidazole acid instead of the usual imidazolium. Lys-12 is oriented so as to polarize the substrate oxygens by hydrogen bonding and/or electrostatic interaction, providing stabilization for the charged transition state. Asn-10 may play a similar role.

206 citations

Journal ArticleDOI
TL;DR: From the structure of the complex of the enzyme with the substrate and cofactor of the oxidation reaction, the orientation of the substrates for the reduction reaction can be deduced with confidence.

205 citations


Network Information
Related Topics (5)
Oxide
213.4K papers, 3.6M citations
86% related
Carbon nanotube
109K papers, 3.6M citations
83% related
Raman spectroscopy
122.6K papers, 2.8M citations
83% related
Thin film
275.5K papers, 4.5M citations
82% related
Silicon
196K papers, 3M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202214
2021807
20201,053
20191,064
20181,112
20171,024