scispace - formally typeset
Search or ask a question
Topic

Substrate (chemistry)

About: Substrate (chemistry) is a research topic. Over the lifetime, 35902 publications have been published within this topic receiving 740722 citations. The topic is also known as: enzyme substrate.


Papers
More filters
Journal ArticleDOI
TL;DR: The results indicate that the TiO(2) photocatalytic system is able to transform the target compound into more oxidized by-products without antimicrobial activity and with a low toxicity.

176 citations

Journal ArticleDOI
TL;DR: The mechanism and the site of substrate (i.e., aglycone) recognition and specificity were investigated in maize beta-glucosidase (Glu1) by x-ray crystallography by using crystals of a catalytically inactive mutant in complex with the natural substrate DIMBOAGlc and competitive inhibitor para-hydroxy-S-mandelonitrile beta- glucoside (dhurrin).
Abstract: The mechanism and the site of substrate (i.e., aglycone) recognition and specificity were investigated in maize β-glucosidase (Glu1) by x-ray crystallography by using crystals of a catalytically inactive mutant (Glu1E191D) in complex with the natural substrate 2-O-β-d-glucopyranosyl-4-hydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOAGlc), the free aglycone DIMBOA, and competitive inhibitor para-hydroxy-S-mandelonitrile β-glucoside (dhurrin). The structures of these complexes and of the free enzyme were solved at 2.1-, 2.1-, 2.0-, and 2.2-Å resolution, respectively. The structural data from the complexes allowed us to visualize an intact substrate, free aglycone, or a competitive inhibitor in the slot-like active site of a β-glucosidase. These data show that the aglycone moiety of the substrate is sandwiched between W378 on one side and F198, F205, and F466 on the other. Thus, specific conformations of these four hydrophobic amino acids and the shape of the aglycone-binding site they form determine aglycone recognition and substrate specificity in Glu1. In addition to these four residues, A467 interacts with the 7-methoxy group of DIMBOA. All residues but W378 are variable among β-glucosidases that differ in substrate specificity, supporting the conclusion that these sites are the basis of aglycone recognition and binding (i.e., substrate specificity) in β-glucosidases. The data also provide a plausible explanation for the competitive binding of dhurrin to maize β-glucosidases with high affinity without being hydrolyzed.

176 citations

Journal ArticleDOI
TL;DR: The changes in structure of the native enzyme, the enzyme with bound substrate, and the alkylated enzyme indicate that the mechanism involves an "open-chain" conformation of substrate and that the intermediate in the isomerization reaction is probably a cis-ene diol because the active-site histidine is correctly placed to abstract a proton from C1 or C2 of the substrate.
Abstract: The structures of crystalline D-xylose isomerase (D-xylose ketol-isomerase; EC 5.3.1.5) from Streptomyces rubiginosus and of its complexes with substrate and with an active-site-directed inhibitor have been determined by x-ray diffraction techniques and refined to 1.9-A resolution. This study identifies the active site, as well as two metal-binding sites. The metal ions are important in maintaining the structure of the active-site region and one of them binds C3-O and C5-O of the substrate forming a six-membered ring. This study has revealed a very close contact between histidine and C1 of a substrate, suggesting that this is the active-site base that abstracts a proton from substrate. The mechanism-based inhibitor is a substrate analog and is turned over by the enzyme to give a product that alkylates this same histidine, reinforcing our interpretation. The changes in structure of the native enzyme, the enzyme with bound substrate, and the alkylated enzyme indicate that the mechanism involves an "open-chain" conformation of substrate and that the intermediate in the isomerization reaction is probably a cis-ene diol because the active-site histidine is correctly placed to abstract a proton from C1 or C2 of the substrate. A water molecule binds to C1O and C2O of the substrate and so may act as a proton donor or acceptor in the enolization of a ring-opened substrate.

176 citations

Journal ArticleDOI
TL;DR: The currently available structural information on ecto-5’NT is reviewed in relation to the catalytic properties and enzyme function.
Abstract: Ecto-5’-nucleotidase (ecto-5’-NT) is attached via a GPI anchor to the extracellular membrane, where it hydrolyses AMP to adenosine and phosphate. Related 5’-nucleotidases exist in bacteria, where they are exported into the periplasmic space. X-ray structures of the 5’-nucleotidase from E. coli showed that the enzyme consists of two domains. The N-terminal domain coordinates two catalytic divalent metal ions, whereas the C-terminal domain provides the substrate specificity pocket for the nucleotides. Thus, the substrate binds at the interface of the two domains. Here, the currently available structural information on ecto-5’NT is reviewed in relation to the catalytic properties and enzyme function.

176 citations

Journal ArticleDOI
TL;DR: The structure of the complex of ascorbate peroxidase–ascorbate defines the ascorBate-binding interaction for the first time and provides new rationalization of the unusual functional features of the related cytochrome c peroxIDase enzyme, which has been a benchmark for per oxidase catalysis for more than 20 years.
Abstract: Heme peroxidases catalyze the H2O2-dependent oxidation of a variety of substrates, most of which are organic. Mechanistically, these enzymes are well characterized: they share a common catalytic cycle that involves formation of a two-electron, oxidized Compound I intermediate followed by two single-electron reduction steps by substrate. The substrate specificity is more diverse — most peroxidases oxidize small organic substrates, but there are prominent exceptions — and there is a notable absence of structural information for a representative peroxidase–substrate complex. Thus, the features that control substrate specificity remain undefined. We present the structure of the complex of ascorbate peroxidase–ascorbate. The structure defines the ascorbate-binding interaction for the first time and provides new rationalization of the unusual functional features of the related cytochrome c peroxidase enzyme, which has been a benchmark for peroxidase catalysis for more than 20 years. A new mechanism for electron transfer is proposed that challenges existing views of substrate oxidation in other peroxidases.

176 citations


Network Information
Related Topics (5)
Oxide
213.4K papers, 3.6M citations
86% related
Carbon nanotube
109K papers, 3.6M citations
83% related
Raman spectroscopy
122.6K papers, 2.8M citations
83% related
Thin film
275.5K papers, 4.5M citations
82% related
Silicon
196K papers, 3M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202214
2021807
20201,053
20191,064
20181,112
20171,024