scispace - formally typeset
Search or ask a question
Topic

Subtropics

About: Subtropics is a research topic. Over the lifetime, 2019 publications have been published within this topic receiving 73745 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Ecosystems thought of as not N limited, such as tropical and subtropical systems, may be more vulnerable in the regeneration phase, in situations where heterogeneity in N availability is reduced by atmospheric N deposition, on sandy soils, or in montane areas.
Abstract: Atmospheric nitrogen (N) deposition is a recognized threat to plant diversity in temperate and northern parts of Europe and North America. This paper assesses evidence from field experiments for N deposition effects and thresholds for terrestrial plant diversity protection across a latitudinal range of main categories of ecosystems, from arctic and boreal systems to tropical forests. Current thinking on the mechanisms of N deposition effects on plant diversity, the global distribution of G200 ecoregions, and current and future (2030) estimates of atmospheric N-deposition rates are then used to identify the risks to plant diversity in all major ecosystem types now and in the future. This synthesis paper clearly shows that N accumulation is the main driver of changes to species composition across the whole range of different ecosystem types by driving the competitive interactions that lead to composition change and/or making conditions unfavorable for some species. Other effects such as direct toxicity of nitrogen gases and aerosols, long-term negative effects of increased ammonium and ammonia availability, soil-mediated effects of acidification, and secondary stress and disturbance are more ecosystem- and site-specific and often play a supporting role. N deposition effects in mediterranean ecosystems have now been identified, leading to a first estimate of an effect threshold. Importantly, ecosystems thought of as not N limited, such as tropical and subtropical systems, may be more vulnerable in the regeneration phase, in situations where heterogeneity in N availability is reduced by atmospheric N deposition, on sandy soils, or in montane areas. Critical loads are effect thresholds for N deposition, and the critical load concept has helped European governments make progress toward reducing N loads on sensitive ecosystems. More needs to be done in Europe and North America, especially for the more sensitive ecosystem types, including several ecosystems of high conservation importance. The results of this assessment show that the vulnerable regions outside Europe and North America which have not received enough attention are ecoregions in eastern and southern Asia (China, India), an important part of the mediterranean ecoregion (California, southern Europe), and in the coming decades several subtropical and tropical parts of Latin America and Africa. Reductions in plant diversity by increased atmospheric N deposition may be more widespread than first thought, and more targeted studies are required in low background areas, especially in the G200 ecoregions.

2,154 citations

Journal ArticleDOI
TL;DR: Paleohydrological data from the African tropics and subtropics, including lake, groundwater and speleothem records, are reviewed to show how environments and climates from both hemispheres are inter-related.

1,507 citations

Journal ArticleDOI
TL;DR: In this paper, the authors analyzed multimodel ensembles for the A2 and B1 emission scenarios produced for the fourth assessment report of the Intergovernmental Panel on Climate Change, with the goal of identifying regions projected to experience high magnitudes of local climate change, development of novel 21st-century climates, and/or the disappearance of extant climates.
Abstract: Key risks associated with projected climate trends for the 21st century include the prospects of future climate states with no current analog and the disappearance of some extant climates. Because climate is a primary control on species distributions and ecosystem processes, novel 21st-century climates may promote formation of novel species associations and other ecological surprises, whereas the disappearance of some extant climates increases risk of extinction for species with narrow geographic or climatic distributions and disruption of existing communities. Here we analyze multimodel ensembles for the A2 and B1 emission scenarios produced for the fourth assessment report of the Intergovernmental Panel on Climate Change, with the goal of identifying regions projected to experience (i) high magnitudes of local climate change, (ii) development of novel 21st-century climates, and/or (iii) the disappearance of extant climates. Novel climates are projected to develop primarily in the tropics and subtropics, whereas disappearing climates are concentrated in tropical montane regions and the poleward portions of continents. Under the high-end A2 scenario, 12-39% and 10-48% of the Earth's terrestrial surface may respectively experience novel and disappearing climates by 2100 AD. Corresponding projections for the low-end B1 scenario are 4-20% and 4-20%. Dispersal limitations increase the risk that species will experience the loss of extant climates or the occurrence of novel climates. There is a close correspondence between regions with globally disappearing climates and previously identified biodiversity hotspots; for these regions, standard conservation solutions (e.g., assisted migration and networked reserves) may be insufficient to preserve biodiversity.

1,175 citations

Journal ArticleDOI
28 Oct 1994-Science
TL;DR: The cause of decadal climate variability over the North Pacific Ocean and North America is investigated by the analysis of data from a multidecadal integration with a state-of-the-art coupled ocean-atmosphere model and observations.
Abstract: The cause of decadal climate variability over the North Pacific Ocean and North America is investigated by the analysis of data from a multidecadal integration with a state-of-the-art coupled ocean-atmosphere model and observations. About one-third of the low-frequency climate variability in the region of interest can be attributed to a cycle involving unstable air-sea interactions between the subtropical gyre circulation in the North Pacific and the Aleutian low-pressure system. The existence of this cycle provides a basis for long-range climate forecasting over the western United States at decadal time scales.

1,071 citations

Journal ArticleDOI
26 Jul 2007-Nature
TL;DR: It is shown that anthropogenic forcing has had a detectable influence on observed changes in average precipitation within latitudinal bands, and that these changes cannot be explained by internal climate variability or natural forcing.
Abstract: Human influence on climate has been detected in surface air temperature, sea level pressure, free atmospheric temperature, tropopause height and ocean heat content. Human-induced changes have not, however, previously been detected in precipitation at the global scale, partly because changes in precipitation in different regions cancel each other out and thereby reduce the strength of the global average signal. Models suggest that anthropogenic forcing should have caused a small increase in global mean precipitation and a latitudinal redistribution of precipitation, increasing precipitation at high latitudes, decreasing precipitation at sub-tropical latitudes, and possibly changing the distribution of precipitation within the tropics by shifting the position of the Intertropical Convergence Zone. Here we compare observed changes in land precipitation during the twentieth century averaged over latitudinal bands with changes simulated by fourteen climate models. We show that anthropogenic forcing has had a detectable influence on observed changes in average precipitation within latitudinal bands, and that these changes cannot be explained by internal climate variability or natural forcing. We estimate that anthropogenic forcing contributed significantly to observed increases in precipitation in the Northern Hemisphere mid-latitudes, drying in the Northern Hemisphere subtropics and tropics, and moistening in the Southern Hemisphere subtropics and deep tropics. The observed changes, which are larger than estimated from model simulations, may have already had significant effects on ecosystems, agriculture and human health in regions that are sensitive to changes in precipitation, such as the Sahel.

1,013 citations


Network Information
Related Topics (5)
Ecosystem
25.4K papers, 1.2M citations
84% related
Climate change
99.2K papers, 3.5M citations
84% related
Vegetation
49.2K papers, 1.4M citations
83% related
Global warming
36.6K papers, 1.6M citations
83% related
Species diversity
32.2K papers, 1.2M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023762
20221,580
2021113
2020109
2019110