scispace - formally typeset
Search or ask a question
Topic

Suggested Upper Merged Ontology

About: Suggested Upper Merged Ontology is a research topic. Over the lifetime, 5965 publications have been published within this topic receiving 128414 citations. The topic is also known as: SUMO.


Papers
More filters
01 Jan 2004
TL;DR: This document provides an introduction to OWL by informally describing the features of each of the sublanguages of OWL, the Web Ontology Language by providing additional vocabulary along with a formal semantics.
Abstract: The OWL Web Ontology Language is designed for use by applications that need to process the content of information instead of just presenting information to humans. OWL facilitates greater machine interpretability of Web content than that supported by XML, RDF, and RDF Schema (RDF-S) by providing additional vocabulary along with a formal semantics. OWL has three increasingly-expressive sublanguages: OWL Lite, OWL DL, and OWL Full. This document is written for readers who want a first impression of the capabilities of OWL. It provides an introduction to OWL by informally describing the features of each of the sublanguages of OWL. Some knowledge of RDF Schema is useful for understanding this document, but not essential. After this document, interested readers may turn to the OWL Guide for more detailed descriptions and extensive examples on the features of OWL. The normative formal definition of OWL can be found in the OWL Semantics and Abstract Syntax. Status of this document OWL Web Ontology Language Overview https://www.w3.org/TR/owl-features/ 1 de 14 09/05/2017 08:32 a.m. This document has been reviewed by W3C Members and other interested parties, and it has been endorsed by the Director as a W3C Recommendation. W3C's role in making the Recommendation is to draw attention to the specification and to promote its widespread deployment. This enhances the functionality and interoperability of the Web. This is one of six parts of the W3C Recommendation for OWL, the Web Ontology Language. It has been developed by the Web Ontology Working Group as part of the W3C Semantic Web Activity (Activity Statement, Group Charter) for publication on 10 February 2004. The design of OWL expressed in earlier versions of these documents has been widely reviewed and satisfies the Working Group's technical requirements. The Working Group has addressed all comments received, making changes as necessary. Changes to this document since the Proposed Recommendation version are detailed in the change log. Comments are welcome at public-webont-comments@w3.org (archive) and general discussion of related technology is welcome at www-rdf-logic@w3.org (archive). A list of implementations is available. The W3C maintains a list of any patent disclosures related to this work. This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at http://www.w3.org/TR/.

4,147 citations

Book
05 Jun 2007
TL;DR: The second edition of Ontology Matching has been thoroughly revised and updated to reflect the most recent advances in this quickly developing area, which resulted in more than 150 pages of new content.
Abstract: Ontologies tend to be found everywhere. They are viewed as the silver bullet for many applications, such as database integration, peer-to-peer systems, e-commerce, semantic web services, or social networks. However, in open or evolving systems, such as the semantic web, different parties would, in general, adopt different ontologies. Thus, merely using ontologies, like using XML, does not reduce heterogeneity: it just raises heterogeneity problems to a higher level. Euzenat and Shvaikos book is devoted to ontology matching as a solution to the semantic heterogeneity problem faced by computer systems. Ontology matching aims at finding correspondences between semantically related entities of different ontologies. These correspondences may stand for equivalence as well as other relations, such as consequence, subsumption, or disjointness, between ontology entities. Many different matching solutions have been proposed so far from various viewpoints, e.g., databases, information systems, and artificial intelligence. The second edition of Ontology Matching has been thoroughly revised and updated to reflect the most recent advances in this quickly developing area, which resulted in more than 150 pages of new content. In particular, the book includes a new chapter dedicated to the methodology for performing ontology matching. It also covers emerging topics, such as data interlinking, ontology partitioning and pruning, context-based matching, matcher tuning, alignment debugging, and user involvement in matching, to mention a few. More than 100 state-of-the-art matching systems and frameworks were reviewed. With Ontology Matching, researchers and practitioners will find a reference book that presents currently available work in a uniform framework. In particular, the work and the techniques presented in this book can be equally applied to database schema matching, catalog integration, XML schema matching and other related problems. The objectives of the book include presenting (i) the state of the art and (ii) the latest research results in ontology matching by providing a systematic and detailed account of matching techniques and matching systems from theoretical, practical and application perspectives.

2,579 citations

Journal ArticleDOI
TL;DR: Improvements and expansions to several branches of the Gene Ontology, as well as updates that have allowed us to more efficiently disseminate the GO and capture feedback from the research community are described.
Abstract: The Gene Ontology (GO; http://wwwgeneontologyorg) is a community-based bioinformatics resource that supplies information about gene product function using ontologies to represent biological knowledge Here we describe improvements and expansions to several branches of the ontology, as well as updates that have allowed us to more efficiently disseminate the GO and capture feedback from the research community The Gene Ontology Consortium (GOC) has expanded areas of the ontology such as cilia-related terms, cell-cycle terms and multicellular organism processes We have also implemented new tools for generating ontology terms based on a set of logical rules making use of templates, and we have made efforts to increase our use of logical definitions The GOC has a new and improved web site summarizing new developments and documentation, serving as a portal to GO data Users can perform GO enrichment analysis, and search the GO for terms, annotations to gene products, and associated metadata across multiple species using the all-new AmiGO 2 browser We encourage and welcome the input of the research community in all biological areas in our continued effort to improve the Gene Ontology

2,529 citations

Proceedings ArticleDOI
17 Oct 2001
TL;DR: The strategy used to create the current version of the SUMO is outlined, some of the challenges that were faced in constructing the ontology are discussed, and its most general concepts and the relations between them are described.
Abstract: The Suggested Upper Merged Ontology (SUMO) is an upper level ontology that has been proposed as a starter document for The Standard Upper Ontology Working Group, an IEEE-sanctioned working group of collaborators from the fields of engineering, philosophy, and information science. The SUMO provides definitions for general-purpose terms and acts as a foundation for more specific domain ontologies. In this paper we outline the strategy used to create the current version of the SUMO, discuss some of the challenges that we faced in constructing the ontology, and describe in detail its most general concepts and the relations between them.

1,761 citations

Journal ArticleDOI
TL;DR: Ontology mapping is seen as a solution provider in today's landscape of ontology research as mentioned in this paper and provides a common layer from which several ontologies could be accessed and hence could exchange information in semantically sound manners.
Abstract: Ontology mapping is seen as a solution provider in today's landscape of ontology research. As the number of ontologies that are made publicly available and accessible on the Web increases steadily, so does the need for applications to use them. A single ontology is no longer enough to support the tasks envisaged by a distributed environment like the Semantic Web. Multiple ontologies need to be accessed from several applications. Mapping could provide a common layer from which several ontologies could be accessed and hence could exchange information in semantically sound manners. Developing such mappings has been the focus of a variety of works originating from diverse communities over a number of years. In this article we comprehensively review and present these works. We also provide insights on the pragmatics of ontology mapping and elaborate on a theoretical approach for defining ontology mapping.

1,384 citations


Network Information
Related Topics (5)
Web service
57.6K papers, 989K citations
87% related
Web page
50.3K papers, 975.1K citations
84% related
Feature vector
48.8K papers, 954.4K citations
81% related
Scalability
50.9K papers, 931.6K citations
81% related
Graph (abstract data type)
69.9K papers, 1.2M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20238
202247
20212
20202
20193
201817