scispace - formally typeset
Search or ask a question
Topic

Superatom

About: Superatom is a research topic. Over the lifetime, 506 publications have been published within this topic receiving 23917 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a broad range of experiments are reviewed and compared with theory, including the behavior of the mass-abundance spectra, polarizabilities, ionization potentials, photoelectron spectra and optical spectra.
Abstract: The study of simple metal clusters has burgeoned in the last decade, motivated by the growing interest in the evolution of physical properties from the atom to the bulk solid, a progression passing through the domain of atomic clusters. On the experimental side, the rapid development of new techniques for producing the clusters and for probing and detecting them has resulted in a phenomenal increase in our knowledge of these systems. For clusters of the simplest metals, the alkali and noble metals, the electronic structure is dominated by the number of valence electrons, and the ionic cores are of secondary importance. These electrons are delocalized, and the electronic system exhibits a shell structure that is closely related to the well-known nuclear shell structure. In this article the results from a broad range of experiments are reviewed and compared with theory. Included are the behavior of the mass-abundance spectra, polarizabilities, ionization potentials, photoelectron spectra, optical spectra, and fragmentation phenomena.

2,469 citations

Journal ArticleDOI
TL;DR: In this paper, a mass spectra for sodium clusters of $N$ atoms per cluster, produced in a supersonic expansion with argon carrier gas, is presented. The spectra show large peaks or steps at $N=8, 20, 40, 58, \mathrm{and} 92$.
Abstract: Mass spectra are presented for sodium clusters of $N$ atoms per cluster ($N=4\ensuremath{-}100$) produced in a supersonic expansion with argon carrier gas. The spectra show large peaks or steps at $N=8, 20, 40, 58, \mathrm{and} 92$. These can be understood in terms of a one-electron shell model in which independent delocalized atomic $3s$ electrons are bound in a spherically symmetric potential well.

1,909 citations

Journal ArticleDOI
TL;DR: An unusual single crystal structure of a 25-gold-atom cluster protected by eighteen phenylethanethiol ligands is reported, which violates the empirical golden rule "cluster of clusters", and is in good correspondence with time-dependent density functional theory calculations for the observed structure.
Abstract: The total structure determination of thiol-protected Au clusters has long been a major issue in cluster research. Herein, we report an unusual single crystal structure of a 25-gold-atom cluster (1.27 nm diameter, surface-to-surface distance) protected by eighteen phenylethanethiol ligands. The Au25 cluster features a centered icosahedral Au13 core capped by twelve gold atoms that are situated in six pairs around the three mutually perpendicular 2-fold axes of the icosahedron. The thiolate ligands bind to the Au25 core in an exclusive bridging mode. This highly symmetric structure is distinctly different from recent predictions of density functional theory, and it also violates the empirical golden rule—“cluster of clusters”, which would predict a biicosahedral structure via vertex sharing of two icosahedral M13 building blocks as previously established in various 25-atom metal clusters protected by phosphine ligands. These results point to the importance of the ligand−gold core interactions. The Au25(SR)1...

1,905 citations

Journal ArticleDOI
TL;DR: A unified view of principles that underlie the stability of particles protected by thiolate or phosphine and halide ligands is provided and is best described by a “noble-gas superatom” analogy.
Abstract: Synthesis, characterization, and functionalization of self-assembled, ligand-stabilized gold nanoparticles are long-standing issues in the chemistry of nanomaterials. Factors driving the thermodynamic stability of well documented discrete sizes are largely unknown. Herein, we provide a unified view of principles that underlie the stability of particles protected by thiolate (SR) or phosphine and halide (PR3, X) ligands. The picture has emerged from analysis of large-scale density functional theory calculations of structurally characterized compounds, namely Au102(SR)44, Au39(PR3)14X6−, Au11(PR3)7X3, and Au13(PR3)10X23+, where X is either a halogen or a thiolate. Attributable to a compact, symmetric core and complete steric protection, each compound has a filled spherical electronic shell and a major energy gap to unoccupied states. Consequently, the exceptional stability is best described by a “noble-gas superatom” analogy. The explanatory power of this concept is shown by its application to many monomeric and oligomeric compounds of precisely known composition and structure, and its predictive power is indicated through suggestions offered for a series of anomalously stable cluster compositions which are still awaiting a precise structure determination.

1,398 citations

Journal ArticleDOI
TL;DR: The crystal structure of the thiolate gold nanoparticle [TOA+][Au25(SCH2CH2Ph)18-], where TOA+ = N(C8H17)4+.
Abstract: We report the crystal structure of the thiolate gold nanoparticle [TOA+][Au25(SCH2CH2Ph)18-], where TOA+ = N(C8H17)4+. The crystal structure reveals three types of gold atoms: (a) one central gold atom whose coordination number is 12 (12 bonds to gold atoms); (b) 12 gold atoms that form the vertices of an icosahedron around the central atom, whose coordination number is 6 (five bonds to gold atoms and one to a sulfur atom), and (c) 12 gold atoms that are stellated on 12 of the 20 faces of the Au13 icosahedron. The arrangement of the latter gold atoms may be influenced by aurophilic bonding. Together they form six orthogonal semirings, or staples, of −Au2(SCH2CH2Ph)3− in an octahedral arrangement around the Au13 core.

1,382 citations


Network Information
Related Topics (5)
Raman spectroscopy
122.6K papers, 2.8M citations
83% related
Quantum dot
76.7K papers, 1.9M citations
82% related
Band gap
86.8K papers, 2.2M citations
82% related
Excited state
102.2K papers, 2.2M citations
81% related
Graphene
144.5K papers, 4.9M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202332
202251
202154
202040
201928
201850