scispace - formally typeset

Topic

Supercapacitor

About: Supercapacitor is a(n) research topic. Over the lifetime, 24597 publication(s) have been published within this topic receiving 1017712 citation(s). The topic is also known as: ultracapacitor & supercap.


Papers
More filters
Journal ArticleDOI
TL;DR: This work has shown that combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries.
Abstract: Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. The discovery that ion desolvation occurs in pores smaller than the solvated ions has led to higher capacitance for electrochemical double layer capacitors using carbon electrodes with subnanometre pores, and opened the door to designing high-energy density devices using a variety of electrolytes. Combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries. The use of carbon nanotubes has further advanced micro-electrochemical capacitors, enabling flexible and adaptable devices to be made. Mathematical modelling and simulation will be the key to success in designing tomorrow's high-energy and high-power devices.

12,902 citations

Journal ArticleDOI
TL;DR: CMG materials are made from 1-atom thick sheets of carbon, functionalized as needed, and here their performance in an ultracapacitor cell is demonstrated, illustrating the exciting potential for high performance, electrical energy storage devices based on this new class of carbon material.
Abstract: The surface area of a single graphene sheet is 2630 m2/g, substantially higher than values derived from BET surface area measurements of activated carbons used in current electrochemical double layer capacitors. Our group has pioneered a new carbon material that we call chemically modified graphene (CMG). CMG materials are made from 1-atom thick sheets of carbon, functionalized as needed, and here we demonstrate in an ultracapacitor cell their performance. Specific capacitances of 135 and 99 F/g in aqueous and organic electrolytes, respectively, have been measured. In addition, high electrical conductivity gives these materials consistently good performance over a wide range of voltage scan rates. These encouraging results illustrate the exciting potential for high performance, electrical energy storage devices based on this new class of carbon material.

6,912 citations

Journal ArticleDOI
TL;DR: Batteries, fuel cells and supercapacitors belong to the same family of energy conversion devices and are needed to service the wide energy requirements of various devices and systems.
Abstract: Electrochemical energy conversion devices are pervasive in our daily lives. Batteries, fuel cells and supercapacitors belong to the same family of energy conversion devices. They are all based on the fundamentals of electrochemical thermodynamics and kinetics. All three are needed to service the wide energy requirements of various devices and systems. Neither batteries, fuel cells nor electrochemical capacitors, by themselves, can serve all applications.

5,595 citations

Journal ArticleDOI
24 Jun 2011-Science
TL;DR: This work synthesized a porous carbon with a Brunauer-Emmett-Teller surface area, a high electrical conductivity, and a low oxygen and hydrogen content that has high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes.
Abstract: Supercapacitors, also called ultracapacitors or electrochemical capacitors, store electrical charge on high-surface-area conducting materials. Their widespread use is limited by their low energy storage density and relatively high effective series resistance. Using chemical activation of exfoliated graphite oxide, we synthesized a porous carbon with a Brunauer-Emmett-Teller surface area of up to 3100 square meters per gram, a high electrical conductivity, and a low oxygen and hydrogen content. This sp 2 -bonded carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form primarily 0.6- to 5-nanometer-width pores. Two-electrode supercapacitor cells constructed with this carbon yielded high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes. The processes used to make this carbon are readily scalable to industrial levels.

4,976 citations

Book
14 Feb 2013
Abstract: 1 Introduction and Historical Perspective 2 Similarities and Differences between Supercapacitors and Batteries for Electrical Energy Storage 3 Energetics and Elements of Kinetics of Electrode Processes 4 Elements of Electrostatics Involved in Treatment of Double-Layers and Ions at Capacitors Electrode Interfaces 5 Behavior of Dielectrics in Capacitors and Theories of Dielectric Polarization 6 The Double-Layer at Capacitor Electrode Interfaces: Its Structure and Capacitance 7 Theoretical Treatment and Modeling of the Double-Layer at Electrode Interfaces 8 Behavior of the Double-Layer in Non-Aqueous Electrolytes and Non-Aqueous Electrolyte Capacitors 9 The Double-Layer and Surface Functionalities at Carbon 10 Electrochemical Capacitors Based on Pseudocapacitance 11 The Electrochemical Behavior of Ruthenium Oxide (RuO2) as a Material for Electrochemical Capacitors 12 Capacitance Behavior of Films Conducting, Electrochemically Reactive Polymers 13 The Electrolyte Factor in Supercapacitor Design and Performance: Conductivity, Ion-Pairing and Solvation 14 Electrochemical Behavior at Porous Electrodes Applications to Capacitors 15 Energy-Density and Power-Density of Electrical Energy Storage Devices 16 AC Impedance Behavior of Electrochemical Capacitors and Other Electrochemical Systems 17 Treatments of Impedance Behavior of Various Circuits and Modeling of Double-Layer Capacitor Frequency Response 18 Self-Discharge of Electrochemical Capacitors in Relation to that of at Batteries 19 Technology Development 20 Patent Survey

4,798 citations


Network Information
Related Topics (5)
Carbon nanotube

109K papers, 3.6M citations

88% related
Graphene

144.5K papers, 4.9M citations

87% related
Nanoparticle

85.9K papers, 2.6M citations

87% related
Oxide

213.4K papers, 3.6M citations

86% related
Thin film

275.5K papers, 4.5M citations

84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2022182
20213,082
20203,144
20193,215
20182,857
20172,561