scispace - formally typeset
Search or ask a question

Showing papers on "Supercapacitor published in 2012"


Journal ArticleDOI
16 Mar 2012-Science
TL;DR: It is shown that graphite oxide sheets can be converted by infrared laser irradiation into porous graphene sheets that are flexible, robust, and highly conductive, and hold promise for high-power, flexible electronics.
Abstract: Although electrochemical capacitors (ECs), also known as supercapacitors or ultracapacitors, charge and discharge faster than batteries, they are still limited by low energy densities and slow rate capabilities. We used a standard LightScribe DVD optical drive to do the direct laser reduction of graphite oxide films to graphene. The produced films are mechanically robust, show high electrical conductivity (1738 siemens per meter) and specific surface area (1520 square meters per gram), and can thus be used directly as EC electrodes without the need for binders or current collectors, as is the case for conventional ECs. Devices made with these electrodes exhibit ultrahigh energy density values in different electrolytes while maintaining the high power density and excellent cycle stability of ECs. Moreover, these ECs maintain excellent electrochemical attributes under high mechanical stress and thus hold promise for high-power, flexible electronics.

3,603 citations


Journal ArticleDOI
TL;DR: Recent advances in strategies for advanced metal oxide-based hybrid nanostructure design are reviewed, with the focus on the binder-free film/array electrodes that can provide larger electrochemically active surface area, faster electron transport and superior ion diffusion, thus leading to substantially improved cycling and rate performance.
Abstract: Metal oxide nanostructures are promising electrode materials for lithium-ion batteries and supercapacitors because of their high specific capacity/capacitance, typically 2-3 times higher than that of the carbon/graphite-based materials. However, their cycling stability and rate performance still can not meet the requirements of practical applications. It is therefore urgent to improve their overall device performance, which depends on not only the development of advanced electrode materials but also in a large part "how to design superior electrode architectures". In the article, we will review recent advances in strategies for advanced metal oxide-based hybrid nanostructure design, with the focus on the binder-free film/array electrodes. These binder-free electrodes, with the integration of unique merits of each component, can provide larger electrochemically active surface area, faster electron transport and superior ion diffusion, thus leading to substantially improved cycling and rate performance. Several recently emerged concepts of using ordered nanostructure arrays, synergetic core-shell structures, nanostructured current collectors, and flexible paper/textile electrodes will be highlighted, pointing out advantages and challenges where appropriate. Some future electrode design trends and directions are also discussed.

2,176 citations


Journal ArticleDOI
TL;DR: In this article, the textural properties and surface chemistry of KOH-activated carbons depend on not only the synthesis parameters, but also different carbon sources employed including fossil/biomass-derived materials, synthetic organic polymers, and various nanostructured carbons (e.g. carbon nanotubes, carbon nanofibers, carbon aerogels, carbide-derived carbons, graphene, etc.).
Abstract: Because of their availability, adjustable microstructure, varieties of forms, and large specific surface area, porous carbon materials are of increasing interest for use in hydrogen storage adsorbents and electrode materials in supercapacitors and lithium–sulfur cells from the viewpoint of social sustainability and environmental friendliness. Therefore, much effort has been made to synthesize and tailor the microstructures of porous carbon materials via various activation procedures (physical and chemical activation). In particular, the chemical activation of various carbon sources using KOH as the activating reagent is very promising because of its lower activation temperature and higher yields, and well-defined micropore size distribution and ultrahigh specific surface area up to 3000 m2 g−1 of the resulting porous carbons. In this feature article, we will cover recent research progress since 2007 on the synthesis of KOH-activated carbons for hydrogen and electrical energy storage (supercapacitors and lithium–sulfur batteries). The textural properties and surface chemistry of KOH-activated carbons depend on not only the synthesis parameters, but also different carbon sources employed including fossil/biomass-derived materials, synthetic organic polymers, and various nanostructured carbons (e.g. carbon nanotubes, carbon nanofibers, carbon aerogels, carbide-derived carbons, graphene, etc.). Following the introduction to KOH activation mechanisms and processing technologies, the characteristics and performance of KOH-activated carbons as well as their relationships are summarized and discussed through the extensive analysis of the literature based on different energy storage systems.

2,046 citations


Journal ArticleDOI
TL;DR: In this paper, a high-voltage asymmetric supercapacitor is successfully fabricated using Ni(OH)2/graphene and porous graphene as the positive and negative electrodes, respectively.
Abstract: Hierarchical flowerlike nickel hydroxide decorated on graphene sheets has been prepared by a facile and cost-effective microwave-assisted method. In order to achieve high energy and power densities, a high-voltage asymmetric supercapacitor is successfully fabricated using Ni(OH)2/graphene and porous graphene as the positive and negative electrodes, respectively. Because of their unique structure, both of these materials exhibit excellent electrochemical performances. The optimized asymmetric supercapacitor could be cycled reversibly in the high-voltage region of 0–1.6 V and displays intriguing performances with a maximum specific capacitance of 218.4 F g−1 and high energy density of 77.8 Wh kg−1. Furthermore, the Ni(OH)2/graphene//porous graphene supercapacitor device exhibits an excellent long cycle life along with 94.3% specific capacitance retained after 3000 cycles. These fascinating performances can be attributed to the high capacitance and the positive synergistic effects of the two electrodes. The impressive results presented here may pave the way for promising applications in high energy density storage systems.

1,808 citations


Journal ArticleDOI
TL;DR: In this article, the importance of synergistic effects between graphene and metal oxides and the beneficial role of graphene in composites for lithium ion batteries (LIBs) and electrochemical capacitors (ECs) is discussed.

1,636 citations


Journal ArticleDOI
16 Jul 2012-ACS Nano
TL;DR: This work presents a high-capacity supercapacitor material based on the nitrogen-doped porous carbon nan ofibers synthesized by carbonization of macroscopic-scale carbonaceous nanofibers coated with polypyrrole (CNFs@polypyr role) at an appropriate temperature.
Abstract: Supercapacitors (also known as ultracapacitors) are considered to be the most promising approach to meet the pressing requirements of energy storage. Supercapacitive electrode materials, which are closely related to the high-efficiency storage of energy, have provoked more interest. Herein, we present a high-capacity supercapacitor material based on the nitrogen-doped porous carbon nanofibers synthesized by carbonization of macroscopic-scale carbonaceous nanofibers (CNFs) coated with polypyrrole (CNFs@polypyrrole) at an appropriate temperature. The composite nanofibers exhibit a reversible specific capacitance of 202.0 F g–1 at the current density of 1.0 A g–1 in 6.0 mol L–1 aqueous KOH electrolyte, meanwhile maintaining a high-class capacitance retention capability and a maximum power density of 89.57 kW kg–1. This kind of nitrogen-doped carbon nanofiber represents an alternative promising candidate for an efficient electrode material for supercapacitors.

1,522 citations


Journal ArticleDOI
TL;DR: In this article, a facile two-step method is developed for large-scale growth of ultrathin mesoporous nickel cobaltite (NiCo2O4) nanosheets on conductive nickel foam with robust adhesion as a high-performance electrode for electrochemical capacitors.
Abstract: A facile two-step method is developed for large-scale growth of ultrathin mesoporous nickel cobaltite (NiCo2O4) nanosheets on conductive nickel foam with robust adhesion as a high-performance electrode for electrochemical capacitors. The synthesis involves the co-electrodeposition of a bimetallic (Ni, Co) hydroxide precursor on a Ni foam support and subsequent thermal transformation to spinel mesoporous NiCo2O4. The as-prepared ultrathin NiCo2O4 nanosheets with the thickness of a few nanometers possess many interparticle mesopores with a size range from 2 to 5 nm. The nickel foam supported ultrathin mesoporous NiCo2O4 nanosheets promise fast electron and ion transport, large electroactive surface area, and excellent structural stability. As a result, superior pseudocapacitive performance is achieved with an ultrahigh specific capacitance of 1450 F g−1, even at a very high current density of 20 A g−1, and excellent cycling performance at high rates, suggesting its promising application as an efficient electrode for electrochemical capacitors.

1,518 citations


Journal ArticleDOI
23 Mar 2012-ACS Nano
TL;DR: The 3D graphene/Co(3)O(4) composite was used as the monolithic free-standing electrode for supercapacitor application and for enzymeless electrochemical detection of glucose and it is demonstrated that it is capable of delivering high specific capacitance and detecting glucose with a ultrahigh sensitivity.
Abstract: Using a simple hydrothermal procedure, cobalt oxide (Co3O4) nanowires were in situ synthesized on three-dimensional (3D) graphene foam grown by chemical vapor deposition. The structure and morphology of the resulting 3D graphene/Co3O4 composites were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Raman spectroscopy. The 3D graphene/Co3O4 composite was used as the monolithic free-standing electrode for supercapacitor application and for enzymeless electrochemical detection of glucose. We demonstrate that it is capable of delivering high specific capacitance of ∼1100 F g–1 at a current density of 10 A g–1 with excellent cycling stability, and it can detect glucose with a ultrahigh sensitivity of 3.39 mA mM–1 cm–2 and a remarkable lower detection limit of <25 nM (S/N = 8.5).

1,467 citations


Journal ArticleDOI
TL;DR: Several challenges remain in developing ASSSs, such as to: i) explore high-performance electrode materials, ii) enhance the interfacial compatibility between electrode and solid-state electrolyte, and iii) simplify the device fabrication process.
Abstract: carbide-derived carbon, [ 12 ] carbon nanotubes (CNTs), [ 14–17 ] and graphene, [ 6 , 7 , 10 , 18 , 19 ] possess notable features including high surface area, high electrical conductivity, and good chemical stability, and therefore they have been widely explored as thinfi lm electrode materials for ASSSs. However, the fabrication of ASSSs generally involves complex solution processing, highpressure pressing, high-temperature sintering, and sputtering techniques. [ 11 , 12 , 14–17 ] Moreover, polymer binders and conductive additives are required to enhance the adhesion between electrode materials and substrates as well as to improve the conductivity of the electrode, which unavoidably leads to decreased energy density of the devices. [ 6 , 20 ] Therefore, several challenges remain in developing ASSSs, such as to: i) explore high-performance electrode materials, ii) enhance the interfacial compatibility between electrode and solid-state electrolyte, and iii) simplify the device fabrication process. Graphene aerogels (GAs) represent a new class of ultralight and porous carbon materials that are associated with high

1,260 citations


Journal ArticleDOI
25 Jun 2012-Small
TL;DR: Several key issues for improving the structure of graphene-based materials and for achieving better capacitor performance, along with the current outlook for the field are discussed.
Abstract: Due to their unique 2D structure and outstanding intrinsic physical properties, such as extraordinarily high electrical conductivity and large surface area, graphene-based materials exhibit great potential for application in supercapacitors. In this review, the progress made so far for their applications in supercapacitors is reviewed, including electrochemical double-layer capacitors, pseudo-capacitors, and asymmetric supercapacitors. Compared with traditional electrode materials, graphene-based materials show some novel characteristics and mechanisms in the process of energy storage and release. Several key issues for improving the structure of graphene-based materials and for achieving better capacitor performance, along with the current outlook for the field, are also discussed.

1,195 citations


Journal ArticleDOI
Bong Gill Choi, MinHo Yang, Won Hi Hong1, Jang Wook Choi1, Yun Suk Huh 
23 Apr 2012-ACS Nano
TL;DR: High-performance supercapacitors are demonstrated by building a three-dimensional (3D) macroporous structure that consists of chemically modified graphene (CMG) that endows MnO(2)/e-CMG composite electrodes with excellent electrochemical properties.
Abstract: In order to develop energy storage devices with high power and energy densities, electrodes should hold well-defined pathways for efficient ionic and electronic transport. Herein, we demonstrate high-performance supercapacitors by building a three-dimensional (3D) macroporous structure that consists of chemically modified graphene (CMG). These 3D macroporous electrodes, namely, embossed-CMG (e-CMG) films, were fabricated by using polystyrene colloidal particles as a sacrificial template. Furthermore, for further capacitance boost, a thin layer of MnO2 was additionally deposited onto e-CMG. The porous graphene structure with a large surface area facilitates fast ionic transport within the electrode while preserving decent electronic conductivity and thus endows MnO2/e-CMG composite electrodes with excellent electrochemical properties such as a specific capacitance of 389 F/g at 1 A/g and 97.7% capacitance retention upon a current increase to 35 A/g. Moreover, when the MnO2/e-CMG composite electrode was asy...

Journal ArticleDOI
24 Jan 2012-ACS Nano
TL;DR: A highly flexible solid-state supercapacitor was fabricated through a simple flame synthesis method and electrochemical deposition process based on a carbon nanoparticles/MnO(2) nanorods hybrid structure using polyvinyl alcohol/H(3)PO(4) electrolyte to highlight the path for its enormous potential in energy management.
Abstract: A highly flexible solid-state supercapacitor was fabricated through a simple flame synthesis method and electrochemical deposition process based on a carbon nanoparticles/MnO2 nanorods hybrid structure using polyvinyl alcohol/H3PO4 electrolyte. Carbon fabric is used as a current collector and electrode (mechanical support), leading to a simplified, highly flexible, and lightweight architecture. The device exhibited good electrochemical performance with an energy density of 4.8 Wh/kg at a power density of 14 kW/kg, and a demonstration of a practical device is also presented, highlighting the path for its enormous potential in energy management.

Journal ArticleDOI
TL;DR: This work provides the first quantitative picture of the structure of an ionic liquid adsorbed inside realistically modelled microporous carbon electrodes and shows how the separation of the positive and negative ions occurs inside the porous disordered carbons, yielding much higher capacitance values than with simpler electrode geometries.
Abstract: Lightweight, low-cost supercapacitors with the capability of rapidly storing a large amount of electrical energy can contribute to meeting continuous energy demands and effectively levelling the cyclic nature of renewable energy sources1. The excellent electrochemical performance of supercapacitors is due to a reversible ion adsorption in porous carbon electrodes. Recently, it was demonstrated that ions from the electrolyte could enter sub nanometre pores, greatly increasing the capacitance2, 3, 4. However, the molecular mechanism of this enhancement remains poorly understood. Here we provide the first quantitative picture of the structure of an ionic liquid adsorbed inside realistically modelled microporous carbon electrodes. We show how the separation of the positive and negative ions occurs inside the porous disordered carbons, yielding much higher capacitance values (125 F g−1) than with simpler electrode geometries5. The proposed mechanism opens the door for the design of materials with improved energy storage capabilities. It also sheds new light on situations where ion adsorption in porous structures or membranes plays a role.

Journal ArticleDOI
TL;DR: In this paper, a review article summarizes the recent research progress on the synthesis of nanostructured carbon and its application in energy storage and conversion, and the common challenges in developing simple, scalable, and environmentally friendly synthetic and manufacturing processes, in controlling the nanoscale and high level structures and functions, and in integrating such materials with suitable device architectures are reviewed.

Journal ArticleDOI
TL;DR: These free-standing thin films provide a route to simplify the electrode-manufacturing process by eliminating conducting additives and binders and are the highest values achieved while simultaneously maintaining excellent specific capacitances and energy densities for graphene materials.
Abstract: We present a novel method to prepare highly conductive, free-standing, and flexible porous carbon thin films by chemical activation of reduced graphene oxide paper. These flexible carbon thin films possess a very high specific surface area of 2400 m2 g–1 with a high in-plane electrical conductivity of 5880 S m–1. This is the highest specific surface area for a free-standing carbon film reported to date. A two-electrode supercapacitor using these carbon films as electrodes demonstrated an excellent high-frequency response, an extremely low equivalent series resistance on the order of 0.1 ohm, and a high-power delivery of about 500 kW kg–1. While higher frequency and power values for graphene materials have been reported, these are the highest values achieved while simultaneously maintaining excellent specific capacitances and energy densities of 120 F g–1 and 26 W h kg–1, respectively. In addition, these free-standing thin films provide a route to simplify the electrode-manufacturing process by eliminating...

Journal ArticleDOI
TL;DR: In this article, an additive-free nano-architectured nickel hydroxide/carbon nanotube (Ni(OH)2/CNT) electrode was proposed for high energy density supercapacitors.
Abstract: The demand for advanced energy storage devices such as supercapacitors and lithium-ion batteries has been increasing to meet the application requirements of hybrid vehicles and renewable energy systems. A major limitation of state-of-art supercapacitors lies in their relatively low energy density compared with lithium batteries although they have superior power density and cycle life. Here, we report an additive-free, nano-architectured nickel hydroxide/carbon nanotube (Ni(OH)2/CNT) electrode for high energy density supercapacitors prepared by a facile two-step fabrication method. This Ni(OH)2/CNT electrode consists of a thick layer of conformable Ni(OH)2 nano-flakes on CNT bundles directly grown on Ni foams (NFs) with a very high areal mass loading of 4.85 mg cm−2 for Ni(OH)2. Our Ni(OH)2/CNT/NF electrode demonstrates the highest specific capacitance of 3300 F g−1 and highest areal capacitance of 16 F cm−2, to the best of our knowledge. An asymmetric supercapacitor using the Ni(OH)2/CNT/NF electrode as the anode assembled with an activated carbon (AC) cathode can achieve a high cell voltage of 1.8 V and an energy density up to 50.6 Wh/kg, over 10 times higher than that of traditional electrochemical double-layer capacitors (EDLCs).

Journal ArticleDOI
TL;DR: In this Review, the importance of graphene-based electrodes, their fabrication techniques, and application areas are discussed.
Abstract: Graphene, the thinnest two dimensional carbon material, has become the subject of intensive investigation in various research fields because of its remarkable electronic, mechanical, optical and thermal properties. Graphene-based electrodes, fabricated from mechanically cleaved graphene, chemical vapor deposition (CVD) grown graphene, or massively produced graphene derivatives from bulk graphite, have been applied in a broad range of applications, such as in light emitting diodes, touch screens, field-effect transistors, solar cells, supercapacitors, batteries, and sensors. In this Review, after a short introduction to the properties and synthetic methods of graphene and its derivatives, we will discuss the importance of graphene-based electrodes, their fabrication techniques, and application areas.

Journal ArticleDOI
TL;DR: Both electrode designs exhibited excellent cycling stability by retaining ∼91-94% of their maximum capacitance after 5000 cycles of continuous charge-discharge, thereby reducing device resistance and nanoporosity with large surface area to allow faster reaction kinetics.
Abstract: A scheme of current collector dependent self-organization of mesoporous cobalt oxide nanowires has been used to create unique supercapacitor electrodes, with each nanowire making direct contact with the current collector. The fabricated electrodes offer the desired properties of macroporosity to allow facile electrolyte flow, thereby reducing device resistance and nanoporosity with large surface area to allow faster reaction kinetics. Co3O4 nanowires grown on carbon fiber paper collectors self-organize into a brush-like morphology with the nanowires completely surrounding the carbon microfiber cores. In comparison, Co3O4 nanowires grown on planar graphitized carbon paper collectors self-organize into a flower-like morphology. In three electrode configuration, brush-like and flower-like morphologies exhibited specific capacitance values of 1525 and 1199 F/g, respectively, at a constant current density of 1 A/g. In two electrode configuration, the brush-like nanowire morphology resulted in a superior superc...

Journal ArticleDOI
TL;DR: In this article, a method for fabricating micro-patterned interdigitated electrodes based on reduced graphene oxide (rGO) and carbon nanotube (CNT) composites for ultra-high power handling micro-supercapacitor application is reported.
Abstract: A novel method for fabricating micro-patterned interdigitated electrodes based on reduced graphene oxide (rGO) and carbon nanotube (CNT) composites for ultra-high power handling micro-supercapacitor application is reported. The binder-free microelectrodes were developed by combining electrostatic spray deposition (ESD) and photolithography lift-off methods. Without typically used thermal or chemical reduction, GO sheets are readily reduced to rGO during the ESD deposition. Electrochemical measurements show that the in-plane interdigital design of the microelectrodes is effective in increasing accessibility of electrolyte ions in-between stacked rGO sheets through an electro-activation process. Addition of CNTs results in reduced restacking of rGO sheets and improved energy and power density. Cyclic voltammetry (CV) measurements show that the specific capacitance of the micro-supercapacitor based on rGO–CNT composites is 6.1 mF cm−2 at 0.01 V s−1. At a very high scan rate of 50 V s−1, a specific capacitance of 2.8 mF cm−2 (stack capacitance of 3.1 F cm−3) is recorded, which is an unprecedented performance for supercapacitors. The addition of CNT, electrolyte-accessible and binder-free microelectrodes, as well as an interdigitated in-plane design result in a high-frequency response of the micro-supercapacitors with resistive-capacitive time constants as low as 4.8 ms. These characteristics suggest that interdigitated rGO–CNT composite electrodes are promising for on-chip energy storage application with high power demands.

Journal ArticleDOI
TL;DR: Graphene/Mn3O4 composites were prepared by a simple hydrothermal process from KMnO4 using ethylene glycol as a reducing agent in this paper.
Abstract: Graphene/Mn3O4 composites were prepared by a simple hydrothermal process from KMnO4 using ethylene glycol as a reducing agent. Mn3O4 nanorods of 100 nm to 1 μm length were observed to be well-dispersed on graphene sheets. To assess the properties of these materials for use in supercapacitors, cyclic voltammetry and galvanostatic charging–discharging measurements were performed. Graphene/Mn3O4 composites could be charged and discharged faster and had higher capacitance than free Mn3O4 nanorods. The capacitance of the composites was 100% retained after 10 000 cycles at a charging rate of 5 A/g.

Journal ArticleDOI
TL;DR: The asymmetric supercapacitor fabricated with high energy and power densities using graphene hydrogel with 3D interconnected pores as the negative electrode and vertically aligned MnO(2) nanoplates on nickel foam as the positive electrode in a neutral aqueous Na( 2)SO(4) electrolyte presents stable cycling performance with 83.4% capacitance retention after 5000 cycles.
Abstract: We have successfully fabricated an asymmetric supercapacitor with high energy and power densities using graphene hydrogel (GH) with 3D interconnected pores as the negative electrode and vertically aligned MnO2 nanoplates on nickel foam (MnO2-NF) as the positive electrode in a neutral aqueous Na2SO4 electrolyte. Because of the desirable porous structure, high specific capacitance and rate capability of GH and MnO2-NF, complementary potential window of the two electrodes, and the elimination of polymer binders and conducting additives, the asymmetric supercapacitor can be cycled reversibly in a wide potential window of 0–2.0 V and exhibits an energy density of 23.2 Wh kg–1 with a power density of 1.0 kW kg–1. Energy density of the asymmetric supercapacitor is significantly improved in comparison with those of symmetric supercapacitors based on GH (5.5 Wh kg–1) and MnO2-NF (6.7 Wh kg–1). Even at a high power density of 10.0 kW kg–1, the asymmetric supercapacitor can deliver a high energy density of 14.9 Wh k...

Journal ArticleDOI
TL;DR: In this article, neutral aqueous medium, i.e. lithium, sodium and potassium sulfate solutions in a wide range of concentrations (0.1−2.5 mol L−1), is used as a promising electrolyte for electrochemical capacitors.
Abstract: This paper is focused on neutral aqueous medium, i.e.lithium, sodium and potassium sulfate solutions in a wide range of concentrations (0.1–2.5 mol L−1) as promising electrolytes for electrochemical capacitors because they are cheap, non-corrosive and allow applying diverse current collectors. These properties make the capacitor assembling process much easier and cheaper. Additionally, such electrolytes are electrochemically stable and environmentally friendly. Electrochemical investigations carried out especially for 1 mol L−1Li2SO4 aqueous solution confirmed the possibility of efficient capacitor work in a wider voltage range, i.e. even at 2.2 V without any significant capacitance fade during 15 000 cycles. The physicochemical properties of ions (i.e. solvation, diffusion or mobility) and their influence on the capacitor electrochemical behaviour are considered.

Journal ArticleDOI
TL;DR: In this article, a critical review of carbon-based nanostructured materials and their composites for use as supercapacitor electrodes is provided, focusing on basic principles of supercapACitors and various factors affecting their performance.
Abstract: This critical review provides an overview of current research on carbon-based nanostructured materials and their composites for use as supercapacitor electrodes. Particular emphasis has been directed towards basic principles of supercapacitors and various factors affecting their performance. The focus of the review is the detailed discussion regarding the performance and stability of carbon-based materials and their composites. Pseudo-active species, such as, conducting polymer/metal oxide have been found to exhibit pseudo-capacitive behavior and carbon-based materials demonstrate electrical double layer capacitance. Carbon-based materials, such as, graphene, carbon nanotubes, and carbon nanofibers, provide high surface area for the deposition of conducting polymer/metal oxide that facilitates the efficient ion diffusion phenomenon and contribute towards higher specific capacitance of the carbon based composite materials with excellent cyclic stability. However, further scope of research still exists from the view point of developing high energy supercapacitor devices in a cost effective and simple way. This review will be of value to researchers and emerging scientists dealing with or interested in carbon chemistry.

Journal ArticleDOI
TL;DR: Results suggest that the WO3–x@Au@MnO2 NWs have promising potential for use in high-performance flexible supercapacitors.
Abstract: WO3–x@Au@MnO2 core–shell nanowires (NWs) are synthesized on a flexible carbon fabric and show outstanding electrochemical performance in supercapacitors such as high specific capacitance, good cyclic stability, high energy density, and high power density. These results suggest that the WO3–x@Au@MnO2 NWs have promising potential for use in high-performance flexible supercapacitors.

Journal ArticleDOI
TL;DR: In this article, the authors proposed a new hybrid supercapacitor system that is able to meet the energy and power demands for a variety of applications, ranging from microelectronic devices to electrical vehicles, which presents itself as a breakthrough improvement.
Abstract: Nanoscience and nanotechnology can provide tremendous benefits to electrochemical energy storage devices, such as batteries and supercapacitors, by combining new nanoscale properties to realize enhanced energy and power capabilities. A number of published reports on hybrid systems are systematically reviewed in this perspective. Several potential strategies to enhance the energy density above that of generation-I electric double layer capacitors (EDLC: activated carbon/activated carbon) are discussed and some fundamental issues and future directions are identified. We suggest a new hybrid supercapacitor system that is able to meet the energy and power demands for a variety of applications, ranging from microelectronic devices to electrical vehicles, which presents itself as a breakthrough improvement. Two practical hybrid supercapacitor systems, namely, a lithium-ion capacitor (LIC: graphite/activated carbon) and a nanohybrid capacitor (NHC: (nc-Li4Ti5O12/CNF composite)/activated carbon), are featured and compared. The proposed NHC can pave the way toward generation-II supercapacitor systems by taking advantage of a novel, high quality, high efficiency and inexpensive nanomaterial preparation procedure. With such a breakthrough in nanofabrication–nanohybridization technology, the NHC, which utilizes an ultrafast nano-crystalline Li4Ti5O12, is considered to be an alternative for conventional generation-I EDLCs.

Journal ArticleDOI
TL;DR: In this article, conducting polymers poly(3,4-ethylenedioxythiophene) (PEDOT), polyaniline (PANi), and polypyrrole (PPy) were directly coated on the surface of reduced graphene oxide (RGO) sheets via an in situ polymerization process to prepare conducting polymer-RGO nanocomposites with different loadings of the conducting polymer.
Abstract: In this work, conducting polymers poly(3,4-ethylenedioxythiophene) (PEDOT), polyaniline (PANi), and polypyrrole (PPy) were directly coated on the surface of reduced graphene oxide (RGO) sheets via an in situ polymerization process to prepare conducting-polymer-RGO nanocomposites with different loadings of the conducting polymers. Experiment results showed that ethanol played an important role in achieving a uniform coating of the polymers on RGO sheets. The electrochemical capacitive properties of the composite materials were investigated by using cycle voltammetry and charge/discharge techniques. The composite consisting of RGO and PANi (RGO-PANi) exhibited a specific capacitance of 361 F/g at a current density of 0.3 A/g. The composites consisting of RGO and PPy (RGO-PPy) and PEDOT (RGO-PEDOT) displayed specific capacitances of 248 and 108 F/g, respectively, at the same current density. More than 80% of initial capacitance retained after 1000 charge/discharge cycles, suggesting a good cycling stability ...

Journal ArticleDOI
TL;DR: A novel method to fabricate conductive, highly flexible, and robust film supercapacitor electrodes based on graphene/MnO(2)/CNTs nanocomposites with significant potential in flexible energy storage devices is presented.
Abstract: Flexible and lightweight energy storage systems have received tremendous interest recently due to their potential applications in wearable electronics, roll-up displays, and other devices. To manufacture such systems, flexible electrodes with desired mechanical and electrochemical properties are critical. Herein we present a novel method to fabricate conductive, highly flexible, and robust film supercapacitor electrodes based on graphene/MnO2/CNTs nanocomposites. The synergistic effects from graphene, CNTs, and MnO2 deliver outstanding mechanical properties (tensile strength of 48 MPa) and superior electrochemical activity that were not achieved by any of these components alone. These flexible electrodes allow highly active material loading (71 wt % MnO2), areal density (8.80 mg/cm2), and high specific capacitance (372 F/g) with excellent rate capability for supercapacitors without the need of current collectors and binders. The film can also be wound around 0.5 mm diameter rods for fabricating full cells...

Journal ArticleDOI
TL;DR: In this article, the authors present an overview on electrochemical characteristics of graphene by summarizing the recent research trend on graphene for energy conversion and storage applications, such as fuel, and present an analysis of the potential of this material for next generation energy conversion devices.

Journal ArticleDOI
TL;DR: It is demonstrated for the first time that TiN can be stabilized without sacrificing its electrochemical performance by using poly(vinyl alcohol) (PVA)/KOH gel as the electrolyte and the polymer electrolyte suppresses the oxidation reaction on electrode surface.
Abstract: Metal nitrides have received increasing attention as electrode materials for high-performance supercapacitors (SCs). However, most of them are suffered from poor cycling stability. Here we use TiN as an example to elucidate the mechanism causing the capacitance loss. X-ray photoelectron spectroscopy analyses revealed that the instability is due to the irreversible electrochemical oxidation of TiN during the charging/discharging process. Significantly, we demonstrate for the first time that TiN can be stabilized without sacrificing its electrochemical performance by using poly(vinyl alcohol) (PVA)/KOH gel as the electrolyte. The polymer electrolyte suppresses the oxidation reaction on electrode surface. Electrochemical studies showed that the TiN solid-state SCs exhibit extraordinary stability up to 15 000 cycles and achieved a high volumetric energy density of 0.05 mWh/cm3. The capability of effectively stabilizing nitride materials could open up new opportunities in developing high-performance and flexib...

Journal ArticleDOI
24 Sep 2012-ACS Nano
TL;DR: By integrating with a triboelectric generator, supercapacitors could be charged and power commercial electronic devices, such as a liquid crystal display or a light-emitting-diode, demonstrating feasibility as an efficient storage component and self-powered micro/nanosystems.
Abstract: All-solid-state flexible supercapacitors based on a carbon/MnO2 (C/M) core–shell fiber structure were fabricated with high electrochemical performance such as high rate capability with a scan rate up to 20 V s–1, high volume capacitance of 2.5 F cm–3, and an energy density of 2.2 × 10–4 Wh cm–3. By integrating with a triboelectric generator, supercapacitors could be charged and power commercial electronic devices, such as a liquid crystal display or a light-emitting-diode, demonstrating feasibility as an efficient storage component and self-powered micro/nanosystems.