scispace - formally typeset
Search or ask a question
Topic

Supercapacitor

About: Supercapacitor is a research topic. Over the lifetime, 24597 publications have been published within this topic receiving 1017712 citations. The topic is also known as: ultracapacitor & supercap.


Papers
More filters
Book
14 Feb 2013
TL;DR: In this paper, the double-layer and surface functionalities at Carbon were investigated and the double layer at Capacitor Electrode Interfaces: its structure and Capacitance.
Abstract: 1 Introduction and Historical Perspective 2 Similarities and Differences between Supercapacitors and Batteries for Electrical Energy Storage 3 Energetics and Elements of Kinetics of Electrode Processes 4 Elements of Electrostatics Involved in Treatment of Double-Layers and Ions at Capacitors Electrode Interfaces 5 Behavior of Dielectrics in Capacitors and Theories of Dielectric Polarization 6 The Double-Layer at Capacitor Electrode Interfaces: Its Structure and Capacitance 7 Theoretical Treatment and Modeling of the Double-Layer at Electrode Interfaces 8 Behavior of the Double-Layer in Non-Aqueous Electrolytes and Non-Aqueous Electrolyte Capacitors 9 The Double-Layer and Surface Functionalities at Carbon 10 Electrochemical Capacitors Based on Pseudocapacitance 11 The Electrochemical Behavior of Ruthenium Oxide (RuO2) as a Material for Electrochemical Capacitors 12 Capacitance Behavior of Films Conducting, Electrochemically Reactive Polymers 13 The Electrolyte Factor in Supercapacitor Design and Performance: Conductivity, Ion-Pairing and Solvation 14 Electrochemical Behavior at Porous Electrodes Applications to Capacitors 15 Energy-Density and Power-Density of Electrical Energy Storage Devices 16 AC Impedance Behavior of Electrochemical Capacitors and Other Electrochemical Systems 17 Treatments of Impedance Behavior of Various Circuits and Modeling of Double-Layer Capacitor Frequency Response 18 Self-Discharge of Electrochemical Capacitors in Relation to that of at Batteries 19 Technology Development 20 Patent Survey

4,908 citations

Journal ArticleDOI
14 Mar 2014-Science
TL;DR: Electrochemical measurements can distinguish between different types of energy storage materials and their underlying mechanisms, used to recover power in cars and electric mass transit vehicles that would otherwise lose braking energy as heat.
Abstract: Electrochemical measurements can distinguish between different types of energy storage materials and their underlying mechanisms.

4,394 citations

Journal ArticleDOI
TL;DR: In this article, the fundamental principles, performance, characteristics, present and future applications of electrochemical capacitors are presented in this communication, and different applications demanding large ECs with high voltage and improved energy and power density are under discussion.

4,175 citations

Journal ArticleDOI
TL;DR: Supercapacitors are able to store and deliver energy at relatively high rates (beyond those accessible with batteries) because the mechanism of energy storage is simple charge-separation (as in conventional capacitors) as discussed by the authors.

3,620 citations

Journal ArticleDOI
16 Mar 2012-Science
TL;DR: It is shown that graphite oxide sheets can be converted by infrared laser irradiation into porous graphene sheets that are flexible, robust, and highly conductive, and hold promise for high-power, flexible electronics.
Abstract: Although electrochemical capacitors (ECs), also known as supercapacitors or ultracapacitors, charge and discharge faster than batteries, they are still limited by low energy densities and slow rate capabilities. We used a standard LightScribe DVD optical drive to do the direct laser reduction of graphite oxide films to graphene. The produced films are mechanically robust, show high electrical conductivity (1738 siemens per meter) and specific surface area (1520 square meters per gram), and can thus be used directly as EC electrodes without the need for binders or current collectors, as is the case for conventional ECs. Devices made with these electrodes exhibit ultrahigh energy density values in different electrolytes while maintaining the high power density and excellent cycle stability of ECs. Moreover, these ECs maintain excellent electrochemical attributes under high mechanical stress and thus hold promise for high-power, flexible electronics.

3,603 citations


Network Information
Related Topics (5)
Carbon nanotube
109K papers, 3.6M citations
88% related
Graphene
144.5K papers, 4.9M citations
87% related
Nanoparticle
85.9K papers, 2.6M citations
87% related
Oxide
213.4K papers, 3.6M citations
86% related
Thin film
275.5K papers, 4.5M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20234,171
20227,539
20213,184
20203,155
20193,215
20182,857