scispace - formally typeset
Search or ask a question

Showing papers on "Supercontinuum published in 2020"


Journal ArticleDOI
TL;DR: In this article, the authors present the generation of femtosecond pulses in ultrafast mode-locked fiber laser using active, passive, hybrid mode-locking techniques, and the emphasis is given to passively modelocked fiber lasers, which plays an indispensable role in medical imaging, space ranging, ophthalmology, terahertz spectroscopy, material micromachining and so on.

61 citations


Journal ArticleDOI
20 Jun 2020
TL;DR: In this article, the authors demonstrate an f-2f interferometer through second-harmonic generation and subsequent supercontinuum generation in a single dispersion-engineered waveguide with a stabilization performance equivalent to a conventional off-chip module.
Abstract: The measurement and stabilization of the carrier–envelope offset frequency fCEO via self-referencing is paramount for optical frequency comb generation, which has revolutionized precision frequency metrology, spectroscopy, and optical clocks. Over the past decade, the development of chip-scale platforms has enabled compact integrated waveguides for supercontinuum generation. However, there is a critical need for an on-chip self-referencing system that is adaptive to different pump wavelengths, requires low pulse energy, and does not require complicated processing. Here, we demonstrate efficient fCEO stabilization of a modelocked laser with only 107 pJ of pulse energy via self-referencing in an integrated lithium niobate waveguide. We realize an f-2f interferometer through second-harmonic generation and subsequent supercontinuum generation in a single dispersion-engineered waveguide with a stabilization performance equivalent to a conventional off-chip module. The fCEO beatnote is measured over a pump wavelength range of 70 nm. We theoretically investigate our system using a single nonlinear envelope equation with contributions from both second- and third-order nonlinearities. Our modeling reveals rich ultrabroadband nonlinear dynamics and confirms that the initial second-harmonic generation followed by supercontinuum generation with the remaining pump is responsible for the generation of a strong fCEO signal as compared to a traditional f-2f interferometer. Our technology provides a highly simplified system that is robust, low in cost, and adaptable for precision metrology for use outside a research laboratory.

58 citations


Journal ArticleDOI
TL;DR: This work demonstrates supercontinuum generation over an octave spaning from 1055 to 2155 nm on the highly nonlinear aluminum gallium arsenide (AlGaAs)-on-insulator platform, and experimentally validate the coherence and numerical simulation shows a high degree of coherence over the full spectrum.
Abstract: We demonstrate supercontinuum generation over an octave spaning from 1055 to 2155 nm on the highly nonlinear aluminum gallium arsenide (AlGaAs)-on-insulator platform. This is enabled by the generation of two dispersive waves in a 3-mm-long dispersion-engineered nano-waveguide. The waveguide is pumped at telecom wavelengths (1555 nm) with 3.6 pJ femtosecond pulses. We experimentally validate the coherence of the generated supercontinuum around the pump wavelength (1450–1750 nm), and our numerical simulation shows a high degree of coherence over the full spectrum.

53 citations


Journal ArticleDOI
TL;DR: This work uses 80-cycle pulses from an industrial-grade laser amplifier to simultaneously drive molecular alignment and supercontinuum generation in a gas-filled capillary, producing more than two octaves of coherent bandwidth and achieving >45-fold compression to a duration of 1.6 cycles.
Abstract: The field of attosecond science was first enabled by nonlinear compression of intense laser pulses to a duration below two optical cycles. Twenty years later, creating such short pulses still requires state-of-the-art few-cycle laser amplifiers to most efficiently exploit “instantaneous” optical nonlinearities in noble gases for spectral broadening and parametric frequency conversion. Here, we show that nonlinear compression can be much more efficient when driven in molecular gases by pulses substantially longer than a few cycles because of enhanced optical nonlinearity associated with rotational alignment. We use 80-cycle pulses from an industrial-grade laser amplifier to simultaneously drive molecular alignment and supercontinuum generation in a gas-filled capillary, producing more than two octaves of coherent bandwidth and achieving >45-fold compression to a duration of 1.6 cycles. As the enhanced nonlinearity is linked to rotational motion, the dynamics can be exploited for long-wavelength frequency conversion and compressing picosecond lasers.

45 citations


Journal ArticleDOI
TL;DR: A compact all-fibre, high pulse energy supercontinuum laser is demonstrated that covers a spectral range from 1440 to 1870 nm with a 7 ns pulse duration and total energy of 18.3 μJ at a repetition rate of 100 kHz and performs multi-spectral photoacoustic microscopy imaging of lipids, both ex vivo on adipose tissue and in vivo to study the development of Xenopus laevis tadpoles.

45 citations


Journal ArticleDOI
TL;DR: An additional periodic phase from order/disorder alignment is proposed to meet the phase-matching condition in arbitrary nonlinear crystals and demonstrated from the visible region to the deep-ultraviolet region, which may revolutionize next-generation nonlinear photonics and their further applications.
Abstract: Nonlinear frequency conversion is a ubiquitous technique that is used to obtain broad-range lasers and supercontinuum coherent sources. The phase-matching condition (momentum conservation relation) is the key criterion but a challenging bottleneck in highly efficient conversion. Birefringent phase matching (BPM) and quasi-phase matching (QPM) are two feasible routes but are strongly limited in natural anisotropic crystals or ferroelectric crystals. Therefore, it is in urgent demand for a general technique that can compensate for the phase mismatching in universal nonlinear materials and in broad wavelength ranges. Here, an additional periodic phase (APP) from order/disorder alignment is proposed to meet the phase-matching condition in arbitrary nonlinear crystals and demonstrated from the visible region to the deep-ultraviolet region (e.g., LiNbO3 and quartz). Remarkably, pioneering 177.3-nm coherent output is first obtained in commercial quartz crystal with an unprecedented conversion efficiency above 1‰. This study not only opens a new roadmap to resuscitate those long-neglected nonlinear optical crystals for wavelength extension, but also may revolutionize next-generation nonlinear photonics and their further applications.

44 citations


Journal ArticleDOI
TL;DR: The experimental demonstration of on-chip two-octave supercontinuum generation in the mid-infrared wavelength, ranging from 3 to 13 μm (that is larger than 2500 cm–1) and covering almost the full transparency window of germanium, paving the way for wideband, coherent, and compact mid- Infrared light sources by using a single device and compatible with large-scale fabrication processes.
Abstract: Midinfrared spectroscopy is a universal way to identify chemical and biological substances. Indeed, when interacting with a light beam, most molecules are responsible for absorption at specific wavelengths in the mid-IR spectrum, allowing to detect and quantify small traces of substances. On-chip broadband light sources in the mid-infrared are thus of significant interest for compact sensing devices. In that regard, supercontinuum generation offers a mean to efficiently perform coherent light conversion over an ultrawide spectral range, in a single and compact device. This work reports the experimental demonstration of on-chip two-octave supercontinuum generation in the mid-infrared wavelength, ranging from 3 to 13 μm (that is larger than 2500 cm-1) and covering almost the full transparency window of germanium. Such an ultrawide spectrum is achieved thanks to the unique features of Ge-rich graded SiGe waveguides, which allow second-order dispersion tailoring and low propagation losses over a wide wavelength range. The influence of the pump wavelength and power on the supercontinuum spectra has been studied. A good agreement between the numerical simulations and the experimental results is reported. Furthermore, a very high coherence is predicted in the entire spectrum. These results pave the way for wideband, coherent, and compact mid-infrared light sources by using a single device and compatible with large-scale fabrication processes.

42 citations


Journal ArticleDOI
01 Mar 2020
TL;DR: In this article, a deep neural network was trained with experimental data to learn the relation between the input spatial beam profile of the pump pulse and the spectrum of the light at the output of the multimode fiber.
Abstract: Spatiotemporal nonlinear interactions in multimode fibers are of interest for beam shaping and frequency conversion by exploiting the nonlinear interaction of different pump modes from quasi-continuous wave to ultrashort pulses centered around visible to infrared pump wavelengths. The nonlinear effects in multi-mode fibers depend strongly on the excitation condition; however, relatively little work has been reported on this subject. Here, we present a machine learning approach to learn and control nonlinear frequency conversion inside multimode fibers. We experimentally show that the spectrum of the light at the output of the fiber can be tailored by a trained deep neural network. The network was trained with experimental data to learn the relation between the input spatial beam profile of the pump pulse and the spectrum of the light at the output of the multimode fiber. For a user-defined target spectrum, the network computes the spatial beam profile to be applied at the input of the fiber. The physical processes involved in the creation of new optical frequencies are cascaded stimulated Raman scattering as well as supercontinuum generation. We show experimentally that these processes are very sensitive to the spatial shape of the excitation and that a deep neural network is able to learn the relation between the spatial excitation at the input and the spectrum at its output. The method is limited to spectral shapes within the achievable nonlinear effects supported by the test setup, but the demonstrated method can be implemented to learn and control other spatiotemporal nonlinear effects.

42 citations


Posted Content
TL;DR: In this paper, a recurrent neural network with long short-term memory (LSTM) was used to predict the temporal and spectral evolution of higher-order soliton compression and supercontinuum generation.
Abstract: The propagation of ultrashort pulses in optical fibre displays complex nonlinear dynamics that find important applications in fields such as high power pulse compression and broadband supercontinuum generation. Such nonlinear evolution however, depends sensitively on both the input pulse and fibre characteristics, and optimizing propagation for application purposes requires extensive numerical simulations based on generalizations of a nonlinear Schrodinger-type equation. This is computationally-demanding and creates a severe bottleneck in using numerical techniques to design and optimize experiments in real-time. Here, we present a solution to this problem using a machine-learning based paradigm to predict complex nonlinear propagation in optical fibres with a recurrent neural network, bypassing the need for direct numerical solution of a governing propagation model. Specifically, we show how a recurrent neural network with long short-term memory accurately predicts the temporal and spectral evolution of higher-order soliton compression and supercontinuum generation, solely from a given transform-limited input pulse intensity profile. Comparison with experiments for the case of soliton compression shows remarkable agreement in both temporal and spectral domains. In optics, our results apply readily to the optimization of pulse compression and broadband light sources, and more generally in physics, they open up new perspectives for studies in all nonlinear Schrodinger-type systems in studies of Bose-Einstein condensates, plasma physics, and hydrodynamics.

42 citations



Journal ArticleDOI
TL;DR: In this article, the authors used thin solid plates in a double multi-plate supercontinuum configuration, delivering a broadband spectrum spanning from Ω(n) to √ n.
Abstract: High-contrast, intense single-cycle pulses are highly desirable tools in ultrafast science, enabling highest temporal resolution, pushing matter to extreme conditions, and serving as drivers in petahertz electronics. In this Letter, we use thin solid plates in a double multi-plate supercontinuum configuration, delivering a broadband spectrum spanning from $\sim\!{400}$∼400 to $\sim\!{1000}\;{\rm nm}$∼1000nm at the $ - {20}\;{\rm dB}$−20dB intensity level to produce a single-cycle pulse. We show that the spectral broadening by self-phase modulation with few-cycle pulses is more suitable for compression than the single-cycle limit than with multi-cycle pulses. The pulses are compressed to 2.6 fs pulses, close to the transform limit of 2.55 fs, with an energy of 0.235 mJ. They exhibit an excellent power stability of 0.5% rms over 3 h and a beam profile. The obtained single-cycle pulses can be utilized in many applications, such as generation of isolated attosecond pulses via high-order harmonic generation, investigation of ultrafast phenomena with extreme temporal resolution, or high-intensity laser-solid experiments.

Journal ArticleDOI
20 Jan 2020
TL;DR: In this article, the nonlinear response of a fast-ionizing gas driven by a two-color field, consisting of a high-peak-power sub-100-fs mid-IR pulse and its second harmonic, is shown to provide a source of a bright multiband supercontinuum (SC) radiation, whose spectrum spans over about 14 octaves, stretching from below 300 nm all the way beyond 4.3 mm.
Abstract: Combined optical nonlinearity of bound and free electrons in a fast-ionizing medium driven by ultrashort, mid-infrared (mid-IR) pulses gives rise to a vast variety of ultrafast nonlinear-optical scenarios, producing bright, broadband radiation in spectral ranges as different as ultraviolet (UV) and terahertz (THz). Given its enormous bandwidth, a quantitative experimental analysis of this type of nonlinear response is anything but simple. Here, we confront this challenge by ultrabroadband spectral measurements performed across the spectral range from the UV to the millimeter-wave (MMW) band jointly with beam profile analysis in the THz-to-MMW band and direct time-domain field waveform characterization. As one of the most striking results, the nonlinear response of a fast-ionizing gas driven by a two-color field, consisting of a high-peak-power sub-100-fs mid-IR pulse and its second harmonic, is shown to provide a source of a bright multiband supercontinuum (SC) radiation, whose spectrum spans over about 14 octaves, stretching from below 300 nm all the way beyond 4.3 mm. The MMW-to-THz part of this SC is emitted, as direct measurements show, in the form of half-cycle field waveforms that can be focused to yield a field strength of $ {\approx}{5}\;{\rm MV/cm}$≈5MV/cm. At least 1.5% of the MMW–THz supercontinuum energy is emitted in the MMW range, giving rise to MMW field strengths up to 100 kV/cm in the beam waist region.

Journal ArticleDOI
20 Sep 2020
TL;DR: In this paper, a supercontinuum-based dual-comb spectrometer was proposed for high-resolution and fast detection of molecular vibrational absorption in mid-infrared (mid-IR) spectrometers.
Abstract: High resolution and fast detection of molecular vibrational absorption is important for organic synthesis, pharmaceutical processes, and environmental monitoring, and is enabled by mid-infrared (mid-IR) laser frequency combs via dual-comb spectroscopy. Here, we demonstrate a novel and highly simplified approach to broadband mid-IR dual-comb spectroscopy via supercontinuum generation, achieved using unprecedented nanophotonic dispersion engineering that allows for ultra-broadband and flat-envelope mid-IR frequency combs. Our mid-IR dual-comb spectrometer has an instantaneous bandwidth covering the functional group region from 2800–3600cm−1, comprising more than 100,000 comb lines, enabling parallel gas-phase detection with a high sensitivity, sub-Doppler spectral resolution, and a high speed. In addition to the traditional functional groups, their isotopologues are also resolved in this supercontinuum-based dual-comb spectroscopy. Our approach combines well established fiber laser combs, digital coherent data averaging, and integrated nonlinear photonics, each in itself a state-of-the-art technology, signaling the emergence of mid-IR dual-comb spectroscopy for use outside of the protected laboratory environment.

Journal ArticleDOI
TL;DR: It is demonstrated that coherent supercontinuum generation spanning over an octave from a silicon germanium-on-silicon waveguide using ∼200fs pulses at a wavelength of 4 µm with a high degree of coherence across the entire spectrum.
Abstract: We demonstrate coherent supercontinuum generation spanning over an octave from a silicon germanium-on-silicon waveguide using ∼200fs pulses at a wavelength of 4 µm. The waveguide is engineered to provide low all-normal dispersion in the TM polarization. We validate the coherence of the generated supercontinuum via simulations, with a high degree of coherence across the entire spectrum. Such a generated supercontinuum could lend itself to pulse compression down to 22 fs.

Journal ArticleDOI
TL;DR: These results establish a reliable path for multiple octave supercontinuum comb generation in single-crystalline aluminum nitride to enable applications including precision frequency metrology and spectroscopy.
Abstract: We demonstrate ultrabroadband supercontinuum generation from ultraviolet to mid-infrared wavelengths in single-crystalline aluminum nitride waveguides. Tunable dispersive waves are observed at the mid-infrared regime by precisely controlling the waveguide widths. In addition, ultraviolet light is generated through cascaded second-harmonic generation in the modal phase-matched waveguides. Numerical simulation indicates a high degree of coherence of the generated spectrum at around the telecom pump and two dispersive waves. Our results establish a reliable path for multiple octave supercontinuum comb generation in single-crystalline aluminum nitride to enable applications including precision frequency metrology and spectroscopy.

Journal ArticleDOI
TL;DR: In this article, the authors explore the dependency of the LinbO3/Quartz on the waveguide design for filter and sensor applications using COMSOL multi-physics 4.4.

Journal ArticleDOI
TL;DR: To the best of the knowledge, this result represents the highest average output power ever achieved from a As2Se3-based mid-IR supercontinuum source with the potential of a high degree of coherence.
Abstract: We report the demonstration of a fiber-based supercontinuum source delivering up to 825 mW of average output power between 2.5 and 5.0 µm generated in all-normal dispersion regime. The pumping source consists of an amplified ultrafast Er3+:ZrF4 fiber laser providing high peak power femtosecond pulses at 3.6 µm with an average output power exceeding the watt-level. These pulses are spectrally broadened through self-phase modulation using commercial chalcogenide-based step-index fibers. Al2O3 anti-reflection coatings were sputtered on chalcogenide fiber tips to increase the launching efficiency from 54% to 82%, making this record output power possible, and thus confirming that such coatings can support watt-level pumping with intense femtosecond pulses. To the best of our knowledge, this result represents the highest average output power ever achieved from a As2Se3-based mid-IR supercontinuum source with the potential of a high degree of coherence.

Journal ArticleDOI
TL;DR: In this paper, four zero-dispersion wavelength decreasing photonic crystal fibers with different fiber cross structures and taper profiles are fabricated to extend the short wavelength edge of supercontinuum.
Abstract: Supercontinuum covering the ultraviolet-blue region is highly useful for fluorescence microscopy. Four zero-dispersion wavelength decreasing photonic crystal fibers with different fiber cross structures and taper profiles are fabricated to extend the short wavelength edge of supercontinuum. Both nanosecond and picosecond pump pulses at 1 μm are used to generate supercontinuum. With a 3 ns pump pulse, the short wavelength edge of supercontinuum is extended to below 400 nm in a fiber with high air-hole ratio (named T3). The underlying mechanism of supercontinuum generation is explored. The short and long wavelength edges of supercontinuum are highly related with the phase-matching condition which decided by the group velocity curve of fiber small core end. With a 10 ps pump pulse, the spectral intensity around ∼800 nm increases in all four fibers. However, the intensity in shorter wavelength band decreased in fibers with a high air-hole ratio (named T3, T4). The experimental results imply that a zero-dispersion wavelength decreasing photonic crystal fiber suitable for nanosecond pulse pumping is not necessarily suitable for picosecond pulse pumping, especially for fibers with high air-hole ratio.

Journal ArticleDOI
TL;DR: In this article, a supercontinuum-based Fourier transform infrared (FT-IR) spectrometer was proposed and compared with the conventional FT-IR (130µm path length) for a concentration series of aqueous formaldehyde solutions in a liquid flow cell.
Abstract: Fourier transform infrared (FT-IR) spectrometers have been the dominant technology in the field of mid-infrared (mid-IR) spectroscopy for decades. Supercontinuum laser sources operating in the mid-IR spectral region now offer the potential to enrich the field of FT-IR spectroscopy due to their distinctive properties, such as high-brightness, broadband spectral coverage and enhanced stability. In our contribution, we introduce this advanced light source as a replacement for conventional thermal emitters. Furthermore, an approach to efficient coupling of pulsed mid-IR supercontinuum sources to FT-IR spectrometers is proposed and considered in detail. The experimental part is devoted to pulse-to-pulse energy fluctuations of the applied supercontinuum laser, performance of the system, as well as the noise and long-term stability. Comparative measurements performed with a conventional FT-IR instrument equipped with a thermal emitter illustrate that similar noise levels can be achieved with the supercontinuum-based system. The analytical performance of the supercontinuum-based FT-IR spectrometer was tested for a concentration series of aqueous formaldehyde solutions in a liquid flow cell (500 µm path length) and compared with the conventional FT-IR (130 µm path length). The results show a four-times-enhanced detection limit due to the extended path length enabled by the high brightness of the laser. In conclusion, FT-IR spectrometers equipped with novel broadband mid-IR supercontinuum lasers could outperform traditional systems providing superior performance, e.g., interaction path lengths formerly unattainable, while maintaining low noise levels known from highly stable thermal emitters.

Journal ArticleDOI
TL;DR: A coherent mid-infrared supercontinuum spectrum has been reported for the first time using a tapered chalcogenide fiber pumped at various wavelength ranging from 2 µm to 2.6 ²m using an all-normal dispersion engineered chalCogenide glass fiber.
Abstract: Mid-infrared region of electromagnetic spectrum has increased a lot of scientific and technical interest because of its utility to figure out the molecular fingerprints. Current mid-infrared light sources including quantum cascade lasers, thermal-emitters, and synchrotron radiation are not suitable for various potential applications where we require coherent, portable and broadband light sources. During the current decade, several efforts have been put forwarded to extend the spectral range of the supercontinuum. However, the coherent mid-infrared supercontinuum spectrum in the mid-infrared region has been demonstrated rarely. Here, we demonstrate a coherent mid-infrared supercontinuum using a tapered chalcogenide fiber pumped at various wavelength ranging from 2 µm to 2.6 µm. Experimental observations show that the supercontinuum spectrum extending from ~1.6 µm to 3.7 µm can be achieved using a 3 cm long tapered chalcogenide step-index optical fiber pumped with femtosecond laser pulses at 2.6 µm. To the best of our knowledge, using short pump wavelengths at 2 µm to 2.6 µm in an all-normal dispersion engineered chalcogenide glass fiber, the coherent supercontinuum spectrum has been reported first time. Such coherent broadband light source has its key prominence for the various prospective applications in the fields of bio-medical, sensing, and multiplex coherent anti-Stokes Raman scattering microspectroscopy.

Journal ArticleDOI
TL;DR: In this paper, supercontinuum generation in nitrogen-rich (N-rich) silicon nitride waveguides fabricated through back-end complementary-metal-oxide-semiconductor (CMOS)-compatible processes on a 300mm platform was reported.
Abstract: We report supercontinuum generation in nitrogen-rich (N-rich) silicon nitride waveguides fabricated through back-end complementary-metal-oxide-semiconductor (CMOS)-compatible processes on a 300 mm platform. By pumping in the anomalous dispersion regime at a wavelength of 1200 nm, two-octave spanning spectra covering the visible and near-infrared ranges, including the O band, were obtained. Numerical calculations showed that the nonlinear index of N-rich silicon nitride is within the same order of magnitude as that of stoichiometric silicon nitride, despite the lower silicon content. N-rich silicon nitride then appears to be a promising candidate for nonlinear devices compatible with back-end CMOS processes.

Journal ArticleDOI
TL;DR: In this article, a stable 50mJ three-channel optical waveform synthesizer is demonstrated and used to reproducibly generate a high-order harmonic supercontinuum in the soft x-ray region.
Abstract: A stable 50-mJ three-channel optical waveform synthesizer is demonstrated and used to reproducibly generate a high-order harmonic supercontinuum in the soft x-ray region. This synthesizer is composed of pump pulses from a 10-Hz repetition-rate Ti:sapphire pump laser and signal and idler pulses from an infrared two-stage optical parametric amplifier driven by this pump laser. With full active stabilization of all relative time delays, relative phases, and the carrier-envelope phase, a shot-to-shot stable intense continuum harmonic spectrum is obtained around 60 eV with pulse energy above 0.24 μJ. The peak power of the soft x-ray continuum is evaluated to be beyond 1 GW with a 170-as transform limit duration. We found a characteristic delay dependence of the multicycle waveform synthesizer and established its control scheme. Compared with the one-color case, we experimentally observe an enhancement of the cutoff spectrum intensity by one to two orders of magnitude using three-color waveform synthesis.

Journal ArticleDOI
TL;DR: In this article, a table-top beamline providing a soft X-ray supercontinuum extending up to 370 eV from high-order harmonic generation with sub-13 fs 1300 nm driving pulses and simultaneous production of sub-5 fs pulses centered at 800 nm.
Abstract: We present a table-top beamline providing a soft X-ray supercontinuum extending up to 370 eV from high-order harmonic generation with sub-13 fs 1300 nm driving pulses and simultaneous production of sub-5 fs pulses centered at 800 nm. Optimization of high harmonic generation in a long and dense gas medium yields a photon flux of ~ 1.4 × 106 photons/s/1% bandwidth at 300 eV. The temporal resolution of X-ray transient absorption experiments with this beamline is measured to be 11 fs for 800 nm excitation. This dual-wavelength approach, combined with high flux and high spectral and temporal resolution soft X-ray absorption spectroscopy, is a new route to the study of ultrafast electronic dynamics in carbon-containing molecules and materials at the carbon K-edge.


Journal ArticleDOI
TL;DR: In this paper, the authors investigate the spectral stability and noise levels in fiber-based DUV sources, and demonstrate the need for pump laser stabilization and provide an important step towards an understanding of the noise mechanism underlying such complex light-gas nonlinear interactions.
Abstract: Deep-UV (DUV) supercontinuum (SC) sources based on gas-filled hollow-core fibers constitute perhaps the most viable solution towards ultrafast, compact, and tunable lasers in the UV spectral region, which can even also extend into the mid-infrared (IR). Noise and spectral stability of such broadband sources are key parameters that define their true potential and suitability towards real-world applications. In order to investigate the spectral stability and noise levels in these fiber-based DUV sources, we generate an SC spectrum that extends from 180 nm (through phase-matched dispersive waves - DWs) to 4 μm by pumping an argon-filled hollow-core anti-resonant fiber at a mid-IR wavelength of 2.45 μm. We characterize the long-term stability of the source over several days and the pulse-to-pulse relative intensity noise (RIN) of the DW at 275 nm. The results indicate no sign of spectral degradation over 110 hours, but the RIN of the DW pulses at 275 nm is found to be as high as 33.3%. Numerical simulations were carried out to investigate the spectral distribution of the RIN and the results confirm the experimental measurements and that the poor noise performance is due to the high RIN of the mid-IR pump laser, which was hitherto not considered in numerical modelling of these sources. The results presented herein provide an important step towards an understanding of the noise mechanism underlying such complex light-gas nonlinear interactions and demonstrate the need for pump laser stabilization.

Journal ArticleDOI
TL;DR: This work utilizes dispersion engineering of a silicon waveguide to achieve group velocity matching between the pump and the signal, along with an additional degree of freedom to broaden the second harmonic through the strong third-order nonlinearity, and shows a waveguide design that can be used to generate a second-harmonic signal in the entire near-infrared region.
Abstract: Silicon is well known for its strong third-order optical nonlinearity, exhibiting efficient supercontinuum and four-wave mixing processes. A strong second-order effect that is naturally inhibited in silicon can also be observed, for example, by electrically breaking the inversion symmetry and quasi-phase matching the pump and the signal. To generate an efficient broadband second-harmonic signal, however, the most promising technique requires matching the group velocities of the pump and the signal. In this work, we utilize dispersion engineering of a silicon waveguide to achieve group velocity matching between the pump and the signal, along with an additional degree of freedom to broaden the second harmonic through the strong third-order nonlinearity. We demonstrate that the strong self-phase modulation and cross-phase modulation in silicon help broaden the second harmonic by 200 nm in the O-band. Furthermore, we show a waveguide design that can be used to generate a second-harmonic signal in the entire near-infrared region. Our work paves the way for various applications, such as efficient and broadband complementary-metal oxide semiconductor based on—chip frequency synthesizers, entangled photon pair generators, and optical parametric oscillators. Advances in silicon engineering now allow waveguides to deliver frequency doubled light across the entire near-infrared spectrum, an important range for biological imaging and optical communication. Second-harmonic generation, which is normally restricted in silicon because of its underlying crystal symmetry, can be observed by applying strong electric field in silicon, however, the spectral response remains quite narrow to a few nanometers. Neetesh Singh from the Massachusetts Institute of Technology, in Cambridge, United States, and colleagues report a very broadband response of 100s of nanometers using silicon waveguides containing rows of diode junctions. When an electric field is applied to the waveguide, the diodes disrupt the typical silicon symmetry and enable second-harmonic generation from a pump laser. Modifying the cross section of the waveguide to ensure that pump and signal pulses travel though the waveguide at similar velocities enabled generation of frequency doubled light with a broader bandwidth than seen with current silicon or any other material based microstructures.

Journal ArticleDOI
TL;DR: The demonstrated low noise significantly improves the applicability of near-infrared in-amplifier supercontinuum sources for mid-IR imaging and spectroscopy.
Abstract: The pulse-to-pulse relative intensity noise (RIN) of near-infrared (near-IR) in-amplifier supercontinuum (SC) sources and mid-IR cascaded SC sources was experimentally and numerically investigated and shown to have significantly lowered noise due to the fundamental effect of gain-induced soliton-spectral alignment. The mid-IR SC source is based on a near-IR in-amplifier SC pumping a cascade of thulium-doped and ZBLAN fibers. We demonstrate that the active thulium-doped fiber not only extend the spectrum, but also to significantly reduce the RIN by up to 22% in the long wavelength region above 2 μm. Using numerical simulations, we demonstrate that the noise reduction is the result of an interplay between absorption-emission processes and nonlinear soliton dynamics leading to the soliton-spectral alignment. In the same way we show that the RIN of the near-IR in-amplifier SC source is already significantly reduced because the spectral broadening takes place in an active fiber that also introduces soliton-spectral alignment. We further show that the low noise properties are transferred to the subsequent fluoride SC, which has a RIN lower than 10% (5%) in a broad region from 1.1–3.6 μm (1.4–3.0 μm). The demonstrated low noise significantly improves the applicability of these broadband sources for mid-IR imaging and spectroscopy.

Journal ArticleDOI
TL;DR: The development, performance, and maturity of a cost-efficient dual-band Fourier-domain IR OCT system (2 µm and 4 µm central wavelengths) and the 2 µm OCT sub-system is introduced as an affordable alternative for art diagnosis and potentials of the dual- band detection are demonstrated for lithography-based manufactured industrial ceramics.
Abstract: Recent developments and commercial availability of low-noise and bright infrared (IR) supercontinuum sources initiated intensive applied research in the last few years. Covering a significant part of near- and mid-infrared spectral ranges, supercontinuum radiation opened up unique possibilities and alternatives for the well-established imaging technique of optical coherence tomography (OCT). In this contribution, we demonstrate the development, performance, and maturity of a cost-efficient dual-band Fourier-domain IR OCT system (2 µm and 4 µm central wavelengths). The proposed OCT setup is elegantly employing a single supercontinuum source and a pyroelectric linear array. We discuss adapted application-oriented approaches to signal acquisition and post-processing when thermal detectors are applied in interferometers. In the experimental part, the efficiency of the dual-band detection is evaluated. Practical results and direct comparisons of the OCT system operating within the employed sub-bands are exhibited and discussed. Furthermore, we introduce the 2 µm OCT sub-system as an affordable alternative for art diagnosis; therefore, high resolution and sensitive measurements of the painting mock-ups are presented. Finally, potentials of the dual-band detection are demonstrated for lithography-based manufactured industrial ceramics.

Journal ArticleDOI
TL;DR: In this paper, the authors present directly oscillator-driven self-compression inside an all-bulk Herriott-type multi-pass cell in the near-infrared spectral range.
Abstract: We present directly oscillator-driven self-compression inside an all-bulk Herriott-type multi-pass cell in the near-infrared spectral range. By utilizing precise dispersion management of the multi-pass cell mirrors, we achieve pulse compression from 300 fs down to 31 fs at 11 µJ pulse energy and 119 W average power with a total efficiency exceeding 85%. This corresponds to an increase in peak power by more than a factor of three and a temporal compression by almost a factor of ten in a single broadening stage without necessitating subsequent dispersive optics for temporal compression. The concept is scalable towards millijoule pulse energies and can be implemented in visible, near-infrared and infrared spectral ranges. Importantly, it paves a way towards exploiting Raman soliton self-frequency shifting, supercontinuum generation and other highly nonlinear effects at unprecedented high peak power and pulse energy levels.

Journal ArticleDOI
TL;DR: It is shown that the Si3N4 waveguides system can be further engineered to broaden the coverage of a single DW without losing efficiency, as to enable simultaneous and discrete detection of several gas-phase molecules within the 2900 and 3380cm-1 functional group region.
Abstract: Efficient third-order nonlinear optical processes have been successfully integrated on silicon nitride (Si3N4) waveguides. In particular, owing to Si3N4 wide transparency window spanning from the visible to the middle-infrared (mid-IR), efficient mid-IR dispersive-wave (DW) generation from a fiber laser has been recently demonstrated, and its potential as a source for absorption spectroscopy of a single gas has been established. Here we show that the system can be further engineered to broaden the coverage of a single DW without losing efficiency, as to enable simultaneous and discrete detection of several gas-phase molecules within the 2900 and 3380cm−1 functional group region. We demonstrate quantitative detection of acetylene, methane, and ethane using a simple direct-absorption spectroscopy scheme, achieving a several hundreds of parts-per-million noise-equivalent detection limit with a 5 cm long gas cell.