scispace - formally typeset
Search or ask a question
Topic

Supercontinuum

About: Supercontinuum is a research topic. Over the lifetime, 7071 publications have been published within this topic receiving 127671 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors focus on the use of supercontinuum sources to construct novel instrumentation for chemical sensing and provide an outlook and a summary of where and how the field may develop over coming years.
Abstract: The advent of compact, high brightness supercontinuum radiation sources employing solid core photonic crystal fibres is beginning to make an impact across the field of applied spectroscopy research In this article we focus on the use of supercontinuum sources to construct novel instrumentation for chemical sensing A brief overview is given on the mechanisms of supercontinuum generation in solid core photonic crystal fibres, and then we review recent, and present new, results from our own research We present examples on gas phase sensing applications, permitting wide bandwidth molecular spectra to be gathered at ultrahigh speed Furthermore we demonstrate the design and construction of a wide bandwidth microscope for wavelength flexible hyperspectral confocal imaging We conclude with an outlook and a summary of where and how we think the field may develop over coming years

208 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the supercontinuum is compressible to a duration of 26 fs, and has a high degree of coherence between all the frequency components, and is a single pulse in the time domain.
Abstract: We demonstrate supercontinuum generation in a photonic crystal fiber with all-normal group velocity dispersion. Pumping a short section of this fiber with compressed pulses from a compact amplified fiber laser generates a 200 nm bandwidth continuum with typical self-phase-modulation characteristics. We demonstrate that the supercontinuum is compressible to a duration of 26 fs. It therefore has a high degree of coherence between all the frequency components, and is a single pulse in the time domain. A smooth, flat spectrum spanning 800 nm is achieved using a longer piece of fiber.

207 citations

Journal ArticleDOI
TL;DR: To the best of the knowledge, this is the broadest MIR SC generation observed so far in optical fibers and facilitates fiber-based applications in sensing, medical, and biological imaging areas.
Abstract: We experimentally demonstrate mid-infrared (MIR) supercontinuum (SC) generation spanning ∼2.0 to 15.1 μm in a 3 cm-long chalcogenide step-index fiber. The pump source is generated by the difference frequency generation with a pulse width of ∼170 fs, a repetition rate of ∼1000 Hz, and a wavelength range tunable from 2.4 to 11 μm. To the best of our knowledge, this is the broadest MIR SC generation observed so far in optical fibers. It facilitates fiber-based applications in sensing, medical, and biological imaging areas.

207 citations

Journal ArticleDOI
TL;DR: In this article, the effect of the fiber geometry on the spectral resolution and bandwidth was investigated, and the additional limitation on the bandwidth imposed by speckle contrast reduction when measuring dense spectra.
Abstract: A standard multimode optical fiber can be used as a general purpose spectrometer after calibrating the wavelength dependent speckle patterns produced by interference between the guided modes of the fiber. A transmission matrix was used to store the calibration data and a robust algorithm was developed to reconstruct an arbitrary input spectrum in the presence of experimental noise. We demonstrate that a 20 meter long fiber can resolve two laser lines separated by only 8 pm. At the other extreme, we show that a 2 centimeter long fiber can measure a broadband continuous spectrum generated from a supercontinuum source. We investigate the effect of the fiber geometry on the spectral resolution and bandwidth, and also discuss the additional limitation on the bandwidth imposed by speckle contrast reduction when measuring dense spectra. Finally, we demonstrate a method to reduce the spectrum reconstruction error and increase the bandwidth by separately imaging the speckle patterns of orthogonal polarizations. The multimode fiber spectrometer is compact, lightweight, low cost, and provides high resolution with low loss.

203 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the simultaneous excitation of the microstuctured fiber in its normal and anomalous dispersion regimes using the fundamental and second harmonic signals of a passively Q-switched microchip laser leads to a homogeneous supercontinuum in the visible range.
Abstract: We report on the experimental demonstration of a white-light supercontinuum generation in normally dispersive singlemode air-silica microstructured fiber. We demonstrate that the simultaneous excitation of the microstuctured fiber in its normal and anomalous dispersion regimes using the fundamental and second harmonic signals of a passively Q-switched microchip laser leads to a homogeneous supercontinuum in the visible range. This pumping scheme allows the suppression of the cascaded Raman effect predominance in favor of an efficient spectrum broadening induced by parametric phenomena. A flat supercontinuum extended from 400 to 700 nm is achieved.

202 citations


Network Information
Related Topics (5)
Photonics
37.9K papers, 797.9K citations
93% related
Photonic crystal
43.4K papers, 887K citations
92% related
Optical fiber
167K papers, 1.8M citations
92% related
Laser
353.1K papers, 4.3M citations
87% related
Plasmon
32.5K papers, 983.9K citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023184
2022440
2021341
2020411
2019528
2018442