scispace - formally typeset
Search or ask a question
Topic

Supercontinuum

About: Supercontinuum is a research topic. Over the lifetime, 7071 publications have been published within this topic receiving 127671 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A new method to generate multi-watt-level, octave-spanning, spectrally flat supercontinua stemmed from cascaded Raman scattering in graded-index multimode fibers is reported.
Abstract: A new method to generate multi-watt-level, octave-spanning, spectrally flat supercontinua stemmed from cascaded Raman scattering in graded-index multimode fibers is reported. Formation dynamics of supercontinua are investigated by studying the effect of fiber length and core size. High power handling capacity of the graded-index multimode fibers is demonstrated by power scaling experiments. Pump pulse repetition rate is scaled from kHz to MHz while pump pulse peak power remains same and ~4 W supercontinuum is achieved with 2 MHz pump repetition rate. To the best of our knowledge, this is the highest average power and repetition supercontinuum source ever reported based on a graded-index multimode silica fiber. Spatial properties of the generated supercontinua are measured and Gaussian-like beam profiles obtained for different wavelength ranges. Numerical simulations are performed to investigate underlying nonlinear dynamics in details and well-aligned with experimental observations.

35 citations

Proceedings ArticleDOI
TL;DR: In this article, the authors review recent advances in Yb fiber lasers and amplifiers for high power short pulse systems and describe associated recent developments in fiber components for use in such systems.
Abstract: We review recent advances in Yb fiber lasers and amplifiers for high power short pulse systems. We go on to describe associated recent developments in fiber components for use in such systems. Examples include microstructured optical fibers for pulse compression and supercontinuum generation, and advanced fiber grating technology for chirped-pulse amplifier systems.

35 citations

Journal ArticleDOI
20 Sep 2019
TL;DR: In this paper, a suspended AlGaAs waveguides integrated on silicon has been shown to achieve low propagation losses within a span of nearly two octaves (1.26-4.6 μm) with an excellent performance of 0.45 dB/cm at λ=2.4 µm.
Abstract: The microscale integration of mid- and long-wave-infrared photonics could enable the development of fieldable, robust chemical sensors, as well as highly efficient infrared frequency converters. However, such technology would be defined by the choice of material platform, which immediately determines the strength and types of optical nonlinearities available, the optical transparency window, modal confinement, and physical robustness. In this work, we demonstrate a new platform, suspended AlGaAs waveguides integrated on silicon, providing excellent performance in all of these metrics. We demonstrate low propagation losses within a span of nearly two octaves (1.26–4.6 μm) with exemplary performance of 0.45 dB/cm at λ=2.4 μm. We exploit the high nonlinearity of this platform to demonstrate 1560 nm-pumped second-harmonic generation and octave-spanning supercontinuum reaching out to 2.3 μm with 3.4 pJ pump pulse energy. With mid-IR pumping, we generate supercontinuum spanning from 2.3 to 6.5 μm. Finally, we demonstrate the versatility of the platform with mid-infrared passive devices such as low-loss 10 μm-radius bends, compact power splitters with 96±1% efficiency, and edge couplers with 3.0±0.1 dB loss. This platform has strong potential for multifunctional integrated photonic systems in the mid-infrared.

35 citations

Proceedings ArticleDOI
TL;DR: In this paper, a new approach by supercontinuum light sources is presented and discussed, which significantly enhances flexibility and coverage of the excitation spectra of typical, rare and natural fluorochromes.
Abstract: Modern microscopy in life sciences is ruled by development and exploration of new dyes and stains (probes for histochemical staining, quantum dots, fluorescent proteins etc.) on one side, and technological improvements and innovations for fluorescence microscopy-especially high resolution and optical sectioning microscopy-on the other side. Concerning the technical innovations, several ingenious inventions have been made available for confocal microscopy. First, the acousto optical tunable filter, which allows switching and dimming of laser lines. Second the spectral detector, employing mirror sliders in front of the detectors which allow continuous tuning of the spectral emission band detected by the sensor. Third, the most challenging task: a substitute to the classical beam splitter-the device which is restricting fluorescence microscopy most. This was solved by introduction of the acousto optical beam splitter. The very last device which is still lacking flexibility is the laser source, operating only at non-equidistant frequencies and requiring a set of quite different laser sources as gas lasers, solid state lasers or diode lasers. A new approach by supercontinuum light sources is presented and discussed, which significantly enhances flexibility and coverage of the excitation spectra of typical, rare and natural fluorochromes.

34 citations

Patent
22 Dec 2011
TL;DR: In this paper, the authors describe an exemplary surgical illumination system that includes a first laser configured to emit a first light beam having a first spectral range, and an illumination probe optically connectable to the first laser.
Abstract: Disclosed is an exemplary surgical illumination system that includes a first laser configured to emit a first light beam having a first spectral range, and an illumination probe optically connectable to the first laser. The first laser may be configured as a supercontinuum laser. The surgical illumination system may include a second laser configured to emit a second light beam having a second spectral range, and a beam combiner for combing the first and second laser beams to form a third laser beam having a spectral range of the first and second lasers. The illumination probe includes a fiber optic cable for delivering at least a portion of the first light beam to a surgical site. The fiber optic cable includes a fiber optic core having a diameter of 100 microns or less.

34 citations


Network Information
Related Topics (5)
Photonics
37.9K papers, 797.9K citations
93% related
Photonic crystal
43.4K papers, 887K citations
92% related
Optical fiber
167K papers, 1.8M citations
92% related
Laser
353.1K papers, 4.3M citations
87% related
Plasmon
32.5K papers, 983.9K citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023184
2022440
2021341
2020411
2019528
2018442