scispace - formally typeset
Search or ask a question
Topic

Supercontinuum

About: Supercontinuum is a research topic. Over the lifetime, 7071 publications have been published within this topic receiving 127671 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a field demonstration of over 1000-channel ultradense WDM transmission with uniform precise channel spacing of 6.25 GHz is reported. And the influence of four-wave-mixing generated in the transmission fiber and the requirements placed on the WDM multiplexer and demultiplexer is described.
Abstract: In this paper, ultradense wavelength-division multiplexing (WDM) transmission technologies are discussed, and a field demonstration of over-1000-channel ultradense WDM transmission is reported. The generation of an ultradense WDM signal using a supercontinuum multicarrier source that generates more than 1000 carriers and uniform precise channel spacing of 6.25 GHz is presented. The influence of four-wave-mixing generated in the transmission fiber and the requirements placed on the WDM multiplexer and demultiplexer is described. An over-1000-channel ultradense WDM transmission experiment is reported. A 1046 /spl times/ 2.67-Gbit/s 6.25-GHz-spaced ultradense WDM signal is successfully transmitted over 126 km of field-installed fibers in the test bed of JGN II.

155 citations

Journal Article
TL;DR: In this paper, the threshold intensity for the stimulated Brillouin scattering process was measured and used to estimate the gain coefficient, which bodes well for slow-light based applications in chalcogenide fibers.
Abstract: Chalcogenide glasses have demonstrated high third-order Kerr (Χ (3) ) nonlinearities up to 1000x higher than silica glass which make them attractive for applications such as nonlinear switching, optical regeneration, Raman amplification, parametric amplification, and supercontinuum generation. Poling of chalcogenide glasses to induce an effective second order (Χ (2) ) nonlinearity has also been demonstrated and opens the possibility for the use of poled glass waveguides for applications such as frequency conversion or electro-optic modulation. Stimulated Brillouin scattering (SBS) has also been investigated in As 2 S 3 and As 2 Se 3 single-mode fibers. The threshold intensity for the stimulated Brillouin scattering process was measured and used to estimate the Brillouin gain coefficient. Preliminary results indicate record high values for the figure of merit and theoretical gain, compared to silica, which bodes well for slow-light based applications in chalcogenide fibers.

155 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a review of physical mechanisms behind the laser generation of white light, examine its applications, and discuss the methods of generation of broadband radiation with controlled spectral, temporal, and phase parameters.
Abstract: Three centuries after Newton's experiments on the decomposition of white light into its spectral components and the synthesis of white light from various colors, nonlinear-optical transformations of ultrashort laser pulses have made it possible to produce an artificial white light with unique spectral properties, controlled time duration, and a high spectral brightness. Owing to its broad and continuous spectrum, such radiation is called supercontinuum. The laser generation of white light is an interesting physical phenomenon and the relevant technology is gaining in practical implications — it offers novel solutions for optical communications and control of ultrashort laser pulses, helps to achieve an unprecedented precision in optical metrology, serves to probe the atmosphere of the Earth, and suggests new strategies for the creation of compact multiplex light sources for nonlinear spectroscopy, microscopy, and laser biomedicine. Here, we provide a review of physical mechanisms behind the laser generation of white light, examine its applications, and discuss the methods of generation of broadband radiation with controlled spectral, temporal, and phase parameters.

155 citations

Journal ArticleDOI
TL;DR: In this paper, a mid-IR supercontinuum (SC) fiber laser based on a thulium-doped fiber amplifier (TDFA) is demonstrated with a continuous spectrum extending from ∼1.9 to 4.5 μm.
Abstract: A mid-IR supercontinuum (SC) fiber laser based on a thulium-doped fiber amplifier (TDFA) is demonstrated. A continuous spectrum extending from ∼1.9 to 4.5 μm is generated with ∼0.7 W time-average power in wavelengths beyond 3.8 μm. The laser outputs a total average power of up to ∼2.6 W from ∼8.5 m length of ZrF4─BaF2─LaF3─AlF3─NaF (ZBLAN) fiber, with an optical conversion efficiency of ∼9% from the TDFA pump to the mid-IR SC. Optimal efficiency in generating wavelengths beyond 3.8 μm is achieved by reducing the losses in the TDFA stage and optimizing the ZBLAN fiber length. We demonstrate a novel (to our knowledge) approach of generating modulation instability-initiated SC starting from 1.55 μm by splitting the spectral shifting process into two steps. In the first step, amplified approximately nanosecond-long 1.55 μm laser diode pulses with ∼2.5 kW peak power generate a SC extending beyond 2.1 μm in ∼25 m length of standard single-mode fiber (SMF). The ∼2 μm wavelength components at the standard SMF output are amplified in a TDFA and coupled into ZBLAN fiber leading to mid-IR SC generation. Up to ∼270 nm SC long wavelength edge extension and ∼2.5× higher optical conversion efficiency to wavelengths beyond 3.8 μm are achieved by switching an Er:Yb-based power amplifier stage with a TDFA. The laser also demonstrates scalability in the average output power with respect to the pulse repetition rate and the amplifier pump power. Numerical simulations are performed by solving the generalized nonlinear Schrodinger equation, which show the long wavelength edge of the SC to be limited by the loss in ZBLAN.

154 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of modulational instability on the output of a broadband supercontinuum was shown to lead to severe temporal jitter in the output, and associated fluctuations in the spectral amplitude and phase across the generated supercontinume.
Abstract: Numerical simulations have been used to study broad-band supercontinuum generation in optical fibers with dispersion and nonlinearity characteristics typical of photonic crystal or tapered fiber structures. The simulations include optical shock and Raman nonlinearity terms, with quantum noise taken into account phenomenologically by including in the input field a noise seed of one photon per mode with random phase. For input pulses of 150-fs duration injected in the anomalous dispersion regime, the effect of modulational instability is shown to lead to severe temporal jitter in the output, and associated fluctuations in the spectral amplitude and phase across the generated supercontinuum. The spectral phase fluctuations are quantified by performing multiple simulations and calculating both the standard deviation of the phase and, more rigorously, the degree of first-order coherence as a function of wavelength across the spectrum. By performing simulations over a range of input pulse durations and wavelengths, we can identify the conditions under which coherent supercontinua with a well-defined spectral phase are generated.

154 citations


Network Information
Related Topics (5)
Photonics
37.9K papers, 797.9K citations
93% related
Photonic crystal
43.4K papers, 887K citations
92% related
Optical fiber
167K papers, 1.8M citations
92% related
Laser
353.1K papers, 4.3M citations
87% related
Plasmon
32.5K papers, 983.9K citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023184
2022440
2021341
2020411
2019528
2018442