scispace - formally typeset
Search or ask a question
Topic

Supercontinuum

About: Supercontinuum is a research topic. Over the lifetime, 7071 publications have been published within this topic receiving 127671 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate wideband, low-noise, highly coherent, and ultraflat supercontinuum (SC) generation using soliton pulse and normal dispersion highly nonlinear fibers.
Abstract: Recently, widely broadened supercontinuum (SC) has been generated using ultrashort pulse and highly nonlinear fibers. However, inherent noise and fine structures have been the problem for the application of SC. We demonstrate wideband, low-noise, highly coherent, and ultraflat SC generation using soliton pulse and normal dispersion highly nonlinear fibers. Characteristics of generated SC are experimentally evaluated, and they are compared with those of the conventional SC. Octave spanning high-quality SC is also generated using high-power soliton pulse.

105 citations

Journal ArticleDOI
TL;DR: In this article, a numerical study of the polarization properties of the broadband supercontinuum (SC) generated in birefringent photonic crystal fibers (PCFs) is presented.
Abstract: We present a numerical study of the polarization properties of the broadband supercontinuum (SC) generated in birefringent photonic crystal fibers (PCFs). The simulations are based on generalized coupled nonlinear Schrodinger equations with quantum noise taken into account. The simulations illustrate the complicated polarization behavior in the SC spectra and show that the pulse-to-pulse polarization state of SC spectra fluctuates because of vector modulation instability. We investigate the polarization stability and uniformity of SC spectra under several simulation conditions and discuss generation of the SC in birefringent PCFs for applications with various polarization requirements.

104 citations

Journal ArticleDOI
TL;DR: The spectral broaden-ing is characterized as a process initiated by modulational instability, but driven by the zero-dispersion dynamics of an N-soliton interacting with the asymmetric phase profile generated by the Raman effect, self-steepening effect, and/or higher-order dispersion.
Abstract: We show in theory and simulation that the supercontinuum generation from an initial continuous wave field in a highly nonlinear fiber operating near the zero-dispersion point can be significantly enhanced with the aid of dispersion management. We characterize the spectral broaden-ing as a process initiated by modulational instability, but driven by the zero-dispersion dynamics of an N-soliton interacting with the asymmetric phase profile generated by the Raman effect, self-steepening effect, and/or higher-order dispersion. Higher N-soliton values lead to shorter pulses and a broader spectrum. This insight allows us to use dispersion management in conjunction with modulational instability to effectively increase the N value and greatly enhance the supercontiuum generation process.

103 citations

Journal ArticleDOI
TL;DR: In this paper, a high-power wavelength-tunable femtosecond fiber laser source is developed based on photonic-crystal fiber technology, which can produce light pulses smoothly tunable within the range of wavelengths from 1.0 to 1.4 μm and allows the generation of supercontinuum stretching from 450 to at least 1750 nm.
Abstract: A high-power wavelength-tunable femtosecond fiber laser source is developed based on photonic-crystal fiber technology. Laser oscillator and amplifier stages in this system employ diode-pumped ytterbium-doped single-polarization large-mode-area photonic-crystal fibers in a stretcher-free configuration, delivering laser pulses with an average power of 10.4 W, a pulse width of 52 fs, and a peak power of 4 MW at a repetition rate of 50 MHz after pulse compression. Nonlinear transformation of such laser pulses in a highly nonlinear photonic-crystal fiber yields light pulses smoothly tunable within the range of wavelengths from 1.0 to 1.4 μm and allows the generation of supercontinuum stretching from 450 to at least 1750 nm. We report experiments on silicon microprocessing and chromium nanofilm patterning at a high repetition rate, demonstrating the potential of the developed fiber-laser source for fast micromachining, microfabrication, and microprocessing.

103 citations

Journal ArticleDOI
TL;DR: It is reported the coherent mid-infrared supercontinuum generation in an all-solid chalcogenide microstructured fiber with all-normal dispersion with a four-hole structure with core material of AsSe2 and air holes that are replaced by As2S5 glass rods.
Abstract: We report the coherent mid-infrared supercontinuum generation in an all-solid chalcogenide microstructured fiber with all-normal dispersion. The chalcogenide microstructured fiber is a four-hole structure with core material of AsSe2 and air holes that are replaced by As2S5 glass rods. Coherent mid-infrared supercontinuum light extended to 3.3 μm is generated in a 2 cm long chalcogenide microstructured fiber pumped by a 2.7 μm laser.

102 citations


Network Information
Related Topics (5)
Photonics
37.9K papers, 797.9K citations
93% related
Photonic crystal
43.4K papers, 887K citations
92% related
Optical fiber
167K papers, 1.8M citations
92% related
Laser
353.1K papers, 4.3M citations
87% related
Plasmon
32.5K papers, 983.9K citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023184
2022440
2021341
2020411
2019528
2018442