scispace - formally typeset
Search or ask a question
Topic

Supercontinuum

About: Supercontinuum is a research topic. Over the lifetime, 7071 publications have been published within this topic receiving 127671 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a chalcogenide core glass, AsSe, and cladding glass, GeAsSe, are selected for their disparate refractive indices yet sufficient thermal-compatibility for fabricating step index fiber (SIF) for mid-infrared supercontinuum generation (MIR-SCG).
Abstract: We select a chalcogenide core glass, AsSe, and cladding glass, GeAsSe, for their disparate refractive indices yet sufficient thermal-compatibility for fabricating step index fiber (SIF) for mid-infrared supercontinuum generation (MIR-SCG). The refractive index dispersion of both bulk glasses is measured over the 0.4 µm–33 µm wavelength-range, probing the electronic and vibrational behavior of these glasses. We verify that a two-term Sellmeier model is unique and sufficient to describe the refractive index dispersion over the wavelength range for which the experimentally determined extinction coefficient is insignificant. A SIF composed of the glasses is fabricated and calculated to exhibit an ultra-high numerical aperture >0.97 over the entire wavelength range 0.4-33 µm suggesting that the SIF glass pair is a promising candidate for MIR-SCG. Material dispersion characteristics and the zero dispersion wavelength, both critical design parameters for SIF for MIR-SCG, are derived.

78 citations

Proceedings ArticleDOI
06 Feb 2005
TL;DR: In this article, a supercontinuum has been generated in As-Se photonic crystal fiber under 100 fs 2500 nm pumping, which extends from 2100 to 3200 nm under 100fs 1000 nm pumping.
Abstract: Broadband IR supercontinuum has been generated in As-Se photonic crystal fiber. Supercontinuum extends from 2100 to 3200 nm under 100 fs 2500 nm pumping.

78 citations

Journal ArticleDOI
TL;DR: In this article, the authors utilize silicon-nitride waveguides to self-reference a telecom-wavelength fiber frequency comb through supercontinuum generation, using 11.3 mW of optical power incident on the chip.
Abstract: We utilize silicon-nitride waveguides to self-reference a telecom-wavelength fiber frequency comb through supercontinuum generation, using 11.3 mW of optical power incident on the chip. This is approximately 10 times lower than conventional approaches using nonlinear fibers and is enabled by low-loss (<2 dB) input coupling and the high nonlinearity of silicon nitride, which can provide two octaves of spectral broadening with incident energies of only 110 pJ. Following supercontinuum generation, self-referencing is accomplished by mixing 780-nm dispersive-wave light with the frequency-doubled output of the fiber laser. In addition, at higher optical powers, we demonstrate f-to-3f self-referencing directly from the waveguide output by the interference of simultaneous supercontinuum and third harmonic generation, without the use of an external doubling crystal or interferometer. These hybrid comb systems combine the performance of fiber-laser frequency combs with the high nonlinearity and compactness of photonic waveguides, and should lead to low-cost, fully stabilized frequency combs for portable and space-borne applications.

78 citations

Journal ArticleDOI
TL;DR: A new achromatic method to generate the optical vortex was proposed and supercontinuum optical vortex generation was experimentally demonstrated without spatial nor topological-charge dispersions.
Abstract: A new achromatic method to generate the optical vortex was proposed and supercontinuum optical vortex generation ranging approximately 500 to approximately 800 nm was experimentally demonstrated without spatial nor topological-charge dispersions. In addition, polarization evolution in our system using Jones vectors and matrices was discussed and the condition of the polarizer to transfer polarizations was elucidated. This method is useful for the application to time-resolved nonlinear spectroscopy utilizing ultrabroadband optical vortex pulses in topological materials such as ring-shaped crystals or annular materials.

77 citations

Journal ArticleDOI
TL;DR: In this article, a detailed study of the coherence properties of an ultrabroadband supercontinuum, enabled by a comprehensive approach involving continuous-wave laser sources to independently probe both the amplitude and phase noise quadratures across the entire spectrum.
Abstract: We present detailed studies of the coherence properties of an ultrabroadband supercontinuum, enabled by a comprehensive approach involving continuous-wave laser sources to independently probe both the amplitude and phase noise quadratures across the entire spectrum. The continuum coherently spans more than 1.5 octaves, supporting Hz-level comparison of ultrastable lasers at 698 nm and 1.54 $\ensuremath{\mu}$m. We present a complete numerical simulation of the accumulated comb coherence in the limit of many pulses, in contrast to the single-pulse level, with systematic experimental verification. The experiment and numerical simulations reveal the presence of quantum-seeded broadband amplitude noise without phase coherence degradation, including the discovery of a dependence of the supercontinuum coherence on the fiber fractional Raman gain.

77 citations


Network Information
Related Topics (5)
Photonics
37.9K papers, 797.9K citations
93% related
Photonic crystal
43.4K papers, 887K citations
92% related
Optical fiber
167K papers, 1.8M citations
92% related
Laser
353.1K papers, 4.3M citations
87% related
Plasmon
32.5K papers, 983.9K citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023184
2022440
2021341
2020411
2019528
2018442