scispace - formally typeset
Search or ask a question
Topic

Supernova nucleosynthesis

About: Supernova nucleosynthesis is a research topic. Over the lifetime, 290 publications have been published within this topic receiving 18668 citations. The topic is also known as: explosive nucleosynthesis.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the nucleosynthetic yield of isotopes lighter than A = 66 (zinc) is determined for a grid of stellar masses and metallicities including stars of 11, 12, 13, 15, 18, 19, 20, 22, 25, 30, 35, and 40 M{sub {circle_dot}} and metals Z = 0, 10{sup {minus}4}, 0.01, 0.1, and 1 times solar (a slightly reduced mass grid is employed for non-solar metallicities).
Abstract: The nucleosynthetic yield of isotopes lighter than A = 66 (zinc) is determined for a grid of stellar masses and metallicities including stars of 11, 12, 13, 15, 18, 19, 20, 22, 25, 30, 35, and 40 M{sub {circle_dot}} and metallicities Z = 0, 10{sup {minus}4}, 0.01, 0.1, and 1 times solar (a slightly reduced mass grid is employed for non-solar metallicities). Altogether 78 different model supernova explosions are calculated. In each case nucleosynthesis has already been determined for 200 isotopes in each of 600 to 1200 zones of the presupernova star, including the effects of time dependent convection. Here each star is exploded using a piston to give a specified final kinetic energy at infinity (typically 1.2 {times} 10{sup 51} erg), and the explosive modifications to the nucleosynthesis, including the effects of neutrino irradiation, determined. A single value of the critical {sup 12}C({sub {alpha},{gamma}}){sup 16}O reaction rate corresponding to S(300 keV) = 170 keV barns is used in all calculations. The synthesis of each isotope is discussed along with its sensitivity to model parameters. In each case, the final mass of the collapsed remnant is also determined and often found not to correspond to the location of the pistonmore » (typically the edge of the iron core), but to a ``mass cut`` farther out. This mass cut is sensitive not only to the explosion energy, but also to the presupernova structure, stellar mass, and the metallicity. Unless the explosion mechanism, for unknown reasons, provides a much larger characteristic energy in more massive stars, it appears likely that stars larger than about 30 M{sub {center_dot}} will experience considerable reimplosion of heavy elements following the initial launch of a successful shock. While such explosions will produce a viable, bright Type II supernova light curve, lacking the radioactive tail, they will have dramatically reduced yields of heavy elements and may leave black hole remnants of up to 10 and more solar masses.« less

3,649 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined the current understanding of the lives and deaths of massive stars, with special attention to the relevant nuclear and stellar physics, and focused on their post-helium-burning evolution.
Abstract: amount of energy, a tiny fraction of which is sufficient to explode the star as a supernova. The authors examine our current understanding of the lives and deaths of massive stars, with special attention to the relevant nuclear and stellar physics. Emphasis is placed upon their post-helium-burning evolution. Current views regarding the supernova explosion mechanism are reviewed, and the hydrodynamics of supernova shock propagation and ‘‘fallback’’ is discussed. The calculated neutron star masses, supernova light curves, and spectra from these model stars are shown to be consistent with observations. During all phases, particular attention is paid to the nucleosynthesis of heavy elements. Such stars are capable of producing, with few exceptions, the isotopes between mass 16 and 88 as well as a large fraction of still heavier elements made by the r and p processes.

1,981 citations

Journal ArticleDOI
TL;DR: The neutrino-heating mechanism, aided by nonradial flows, drives explosions, albeit low-energy ones, of O-Ne-Mg-core and some Fe-core progenitors as mentioned in this paper.
Abstract: Supernova theory, numerical and analytic, has made remarkable progress in the past decade. This progress was made possible by more sophisticated simulation tools, especially for neutrino transport, improved microphysics, and deeper insights into the role of hydrodynamic instabilities. Violent, large-scale nonradial mass motions are generic in supernova cores. The neutrino-heating mechanism, aided by nonradial flows, drives explosions, albeit low-energy ones, of O-Ne-Mg-core and some Fe-core progenitors. The characteristics of the neutrino emission from newborn neutron stars were revised, new features of the gravitational-wave signals were discovered, our notion of supernova nucleosynthesis was shattered, and our understanding of pulsar kicks and explosion asymmetries was significantly improved. But simulations also suggest that neutrino-powered explosions might not explain the most energetic supernovae and hypernovae, which seem to demand magnetorotational driving. Now that modeling is being advanced from...

971 citations

Journal ArticleDOI
TL;DR: In this article, the evolution of all stable nuclei and their radioactive progeni- tors in stellar models computed from the onset of central hydrogen burning through explosion as Type II supernovae was studied.
Abstract: We present the first calculations to follow the evolution of all stable nuclei and their radioactive progeni- tors in stellar models computed from the onset of central hydrogen burning through explosion as Type II supernovae. Calculations are performed for Population I stars of 15, 19, 20, 21, and 25 Musing the most recently available experimental and theoretical nuclear data, revised opacity tables, neutrino losses, and weak interaction rates and taking into account mass loss due to stellar winds. A novel '' adaptive '' reaction net- work is employed with a variable number of nuclei (adjusted each time step) ranging from � 700 on the main sequence to e2200 during the explosion. The network includes, at any given time, all relevant isotopes from hydrogen through polonium (Z ¼ 84). Even the limited grid of stellar masses studied suggests that overall good agreement can be achieved with the solar abundances of nuclei between 16 O and 90 Zr. Interesting dis- crepancies are seen in the 20 Mmodel and (so far, only in that model) are a consequence of the merging of the oxygen, neon, and carbon shells about a day prior to core collapse. We find that, in some stars, most of the '' p-process '' nuclei can be produced in the convective oxygen-burning shell moments prior to collapse; in others, they are made only in the explosion. Serious deficiencies still exist in all cases for the p-process isotopes of Ru and Mo. Subject headings: nuclear reactions, nucleosynthesis, abundances — stars: evolution — supernovae: general On-line material: machine-readable tables

867 citations

Journal ArticleDOI
TL;DR: In this article, a simulation of a 20 solar mass "delayed" supernova explosion is presented, where the authors follow the detailed evolution of material moving through the bubble at the late times appropiate to r-process nucleosynthesis.
Abstract: As a neutron star is formed by the collapse of the iron core of a massive star, its Kelvin-Helmholtz evolution is characterized by the release of gravitational binding energy as neutrinos. The interaction of these neutrinos with heated material above the neutron star generates a hot bubble in an atmosphere that is nearly in hydrostatic equilibrium and heated, after approximately 10 s, to an entropy of S/N(sub AS)k greater than or approximately = 400. The neutron-to-proton ratio for material moving outward through this bubble is set by the balance between neutrino and antineutrino capture on nucleons. Because the electron antineutrino spectrum at this time is hotter than the electron neutrino spectrum, the bubble is neutron-rich (0.38 less than or approximately = Y(sub e) less than or approximately = 0.47). Previous work using a schematic model has shown that these conditions are well suited to the production of heavy elements by the r-process. In this paper we have advanced the numerical modeling of a 20 solar mass 'delayed' supernova explosion to the point that we can follow the detailed evolution of material moving through the bubble at the late times appropiate to r-process nucleosynthesis. The supernova model predicts a final kinetic energy for the ejecta of 1.5 x 10(exp 51) ergs and leaves behind a remnant with a baryon mass of 1.50 solar mass (and a gravitational mass of 1.445 solar mass). We follow the thermodynamic and compositional evolution of 40 trajectories in rho(t), T(t), Y(sub e)(t) for a logarithmic grid of mass elements for the last approximately = 0.03 solar mass to be ejected by the proto-neutron star down to the last less than 10(exp -6) solar mass of material expelled at up to approximately = 18 s after core collapse. We find that an excellent fit to the solar r-process abundance distribution is obtained with no adjustable parameters in the nucleosynthesis calculations. Moreover, the abundances are produced in the quantities required to account for the present Galactic abundances. However, at earlier times, this one-dimensional model ejects too much material with entropies S/N(sub A)k approximately 50 and Y(sub e) approximately 0.46. This leads to an acceptable over production of N = 50 nuclei, particularly Sr-88, Y-89, and Zr-90, relative to their solar abundances. We speculate on various means to avoid the early overproduction and/or ejection of N = 50 isotonic nuclei while still producing and ejecting the correct amount of r-process material.

693 citations


Network Information
Related Topics (5)
Dark matter
41.5K papers, 1.5M citations
80% related
Neutrino
45.9K papers, 1M citations
79% related
Luminosity
26.3K papers, 1.1M citations
79% related
Redshift
33.9K papers, 1.6M citations
79% related
Black hole
40.9K papers, 1.5M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20212
20209
20193
20183
201711
201613