scispace - formally typeset
Search or ask a question
Topic

Superpotential

About: Superpotential is a research topic. Over the lifetime, 3836 publications have been published within this topic receiving 137867 citations.


Papers
More filters
Journal Article
TL;DR: The role of boundary terms in the gravitational Lagrangian and Hamiltonian is explored in this paper, where a symplectic Hamiltonian-boundary term approach is used for a large class of quasilocal energy-momentum expressions for general relativity.
Abstract: The various roles of boundary terms in the gravitational Lagrangian and Hamiltonian are explored. A symplectic Hamiltonian-boundary-term approach is ideally suited for a large class of quasilocal energy-momentum expressions for general relativity. This approach provides a physical interpretation for many of the well-known gravitational energy-momentum expressions including all of the pseudotensors, associating each with unique boundary conditions. From this perspective we find that the pseudotensors of Einstein and M{\o}ller (which is closely related to Komar's superpotential) are especially natural, but the latter has certain shortcomings. Among the infinite possibilities, we found that there are really only two Hamiltonian-boundary-term quasilocal expressions which correspond to {\em covariant} boundary conditions; they are respectively of the Dirichlet or Neumann type. Our Dirichlet expression coincides with the expression recently obtained by Katz and coworkers using Noether arguments and a fixed background. A modification of their argument yields our Neumann expression.

61 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that B-model topological strings on local Calabi-Yau threefolds are large N duals of matrix models, which in the planar limit naturally give rise to special geometry.
Abstract: We show that B-model topological strings on local Calabi-Yau threefolds are large N duals of matrix models, which in the planar limit naturally give rise to special geometry. These matrix models directly compute F-terms in an associated N=1 supersymmetric gauge theory, obtained by deforming N=2 theories by a superpotential term that can be directly identified with the potential of the matrix model. Moreover by tuning some of the parameters of the geometry in a double scaling limit we recover (p,q) conformal minimal models coupled to 2d gravity, thereby relating non-critical string theories to type II superstrings on Calabi-Yau backgrounds.

61 citations

Journal ArticleDOI
TL;DR: In this paper, the authors construct flux-stabilised IIB compactifications whose extra dimensions (EDs) have very different sizes, and use these to describe several vacua with a TeV string scale.
Abstract: We construct flux-stabilised IIB compactifications whose extra dimensions (EDs) have very different sizes, and use these to describe several vacua with a TeV string scale. Because we can access regimes where 2 dimensions are hierarchically larger than the other 4, we find examples where 2 dimensions are micron-sized while the other 4 are at the weak scale in addition to standard examples with all 6 EDs equally large. Besides providing UV completeness, the phenomenology of these models is richer than vanilla large-dimensional models in several ways: (i) they are supersymmetric, with SUSY broken at sub-eV scales in the bulk but only nonlinearly realised in the SM sector, leading to no MSSM superpartners and many more bulk missing-energy channels, as in supersymmetric large extra dimensions (SLED); (ii) small cycles in the complicated extra-dimensional geometry allow some KK states to reside at TeV scales even if all 6 EDs are much larger; (iii) a rich spectrum of string and KK states at TeV scales; and (iv) an equally rich spectrum of light moduli having unusually small (but technically natural) masses, with potentially interesting implications for cosmology and astrophysics that nonetheless evade new-force constraints. The hierarchy problem is solved because the extra-dimensional volume is naturally stabilised at exponentially large values: the EDs are CY geometries with a 4D K3 or T^4-fibration over a 2D base, with moduli stabilised within the LARGE-Volume scenario. The new technical step is the use of poly-instanton corrections to the superpotential (which, unlike for simpler models, are likely to be present on K3 or T^4-fibered CY compactifications) to obtain a large hierarchy between the sizes of different dimensions. For several scenarios we identify the low-energy spectrum and briefly discuss some of their astrophysical, cosmological and phenomenological implications.

61 citations

Journal ArticleDOI
TL;DR: In this article, the differential geometry of a family of N = 2 Landau-Ginzburg models is studied in coupling constant space, where the superpotential is quasihomegeneous and the geometry turns out to be related to the homogeneous bundles over a certain coset space.

61 citations

Journal ArticleDOI
TL;DR: In this article, the behavior of D2-branes on the quintic under complex structure deformations is analyzed by combining Landau-Ginzburg techniques with methods from conformal field theory.
Abstract: The behaviour of D2-branes on the quintic under complex structure deformations is analysed by combining Landau-Ginzburg techniques with methods from conformal field theory. It is shown that the boundary renormalisation group flow induced by the bulk deformations is realised as a gradient flow of the effective space time superpotential which is calculated explicitly to all orders in the boundary coupling constant.

61 citations


Network Information
Related Topics (5)
Supersymmetry
29.7K papers, 1.1M citations
97% related
Gauge theory
38.7K papers, 1.2M citations
96% related
Quantum chromodynamics
47.1K papers, 1.2M citations
94% related
Quantum field theory
24.6K papers, 749.9K citations
93% related
Higgs boson
33.6K papers, 961.7K citations
93% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202344
2022115
202175
202094
201994
2018101