scispace - formally typeset
Search or ask a question
Topic

Superpotential

About: Superpotential is a research topic. Over the lifetime, 3836 publications have been published within this topic receiving 137867 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The presence of fractionally charged states in the massless sector of the authors' superstring-derived standardlike model is investigated and it is shown that these states are divided into three classes, which are exotic color triplets and are therefore confined and may become superheavy at the nonrenormalizable level of the superpotential.
Abstract: We investigate the presence of fractionally charged states in the massless sector of our superstring-derived standardlike model. We show that these states are divided into three classes. The states in two of these classes will receive a Planck mass, at the trilinear level of the superpotential, by giving a vacuum expectation value to a set of neutral singlets in the string model, while the states of the third class are exotic color triplets and are therefore confined and may become superheavy at the nonrenormalizable level of the superpotential.

71 citations

Journal ArticleDOI
TL;DR: In this paper, the saddle point condition becomes the Bethe Ansatz Equation of the SL(2) Heisenberg spin chain which coincides with the F-term equation of the dual two-dimensional theory.
Abstract: We prove a duality, recently conjectured in arXiv:1103.5726, which relates the F-terms of supersymmetric gauge theories defined in two and four dimensions respectively. The proof proceeds by a saddle point analysis of the four-dimensional partition function in the Nekrasov-Shatashvili limit. At special quantized values of the Coulomb branch moduli, the saddle point condition becomes the Bethe Ansatz Equation of the SL(2) Heisenberg spin chain which coincides with the F-term equation of the dual two-dimensional theory. The on-shell values of the superpotential in the two theories are shown to coincide in corresponding vacua. We also identify two-dimensional duals for a large set of quiver gauge theories in four dimensions and generalize our proof to these cases.

71 citations

Journal ArticleDOI
TL;DR: In this paper, a systematic analysis of moduli stabilisation for weakly coupled heterotic string theory compactified on internal manifolds which are smooth Calabi-Yau three-folds up to α′ effects is presented.
Abstract: We perform a systematic analysis of moduli stabilisation for weakly coupled heterotic string theory compactified on internal manifolds which are smooth Calabi-Yau three-folds up to α′ effects. We first review how to stabilise all the geometric and gauge bundle moduli in a supersymmetric way by including fractional fluxes, the requirement of a holomorphic gauge bundle, D-terms, higher order perturbative contributions to the superpotential as well as non-perturbative and threshold effects. We then show that the inclusion of α′ corrections to the Kahler potential leads to new stable Minkowski (or de Sitter) vacua where the complex structure moduli and the dilaton are fixed supersymmetrically at leading order, while the stabilisation of the Kahler moduli at a lower scale leads to spontaneous breaking supersymmetry. The minimum lies at moderately large volumes of all the geometric moduli, at perturbative values of the string coupling and at the right phenomenological value of the GUT gauge coupling. We also provide a dynamical derivation of anisotropic compactifications with stabilised moduli which allow for perturbative gauge coupling unification around 1016 GeV. The value of the gravitino mass can be anywhere between the GUT and the TeV scale depending on the stabilisation of the complex structure moduli. In general, these are fixed by turning on background fluxes, leading to a gravitino mass around the GUT scale since the heterotic three-form flux does not contain enough freedom to tune the superpotential to small values. Moreover accommodating the observed value of the cosmological constant is a challenge. Low-energy supersymmetry could instead be obtained by focusing on particular Calabi-Yau constructions where the gauge bundle is holomorphic only at a point-like sub-locus of complex structure moduli space, or situations with a small number of complex structure moduli (like orbifold models), since in these cases one may fix all the moduli without turning on any quantised background flux. However obtaining the right value of the cosmological constant is even more of a challenge in these cases. Another option would be to focus on compactifications on non-complex manifolds, since these allow for new geometric fluxes which could be used to tune the superpotential as well as the cosmological constant, even if the moduli space of these manifolds is presently only poorly understood.

71 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that the spectrum of chiral operators in supersymmetric quiver gauge theories is typically much larger in the free limit, where the superpotential terms vanish.
Abstract: The spectrum of chiral operators in supersymmetric quiver gauge theories is typically much larger in the free limit, where the superpotential terms vanish. We find that the finite N counting of operators in any free quiver theory, with a product of unitary gauge groups, can be described by associating Young diagrams and Littlewood-Richardson multiplicities to a simple modification of the quiver, which we call the split-node quiver. The large N limit leads to a surprisingly simple infinite product formula for counting gauge invariant operators, valid for any quiver with bifundamental fields. An orthogonal basis for the operators, in the finite N CFT inner product, is given in terms of quiver characters. These are constructed by inserting permutations in the split-node quivers and interpreting the resulting diagrams in terms of symmetric group matrix elements and branching coefficients. The fusion coefficients in the chiral ring - valid both in the UV and in the IR - are computed at finite N. The derivation follows simple diagrammatic moves on the quiver. The large N counting and correlators are expressed in terms of topological field theories on Riemann surfaces obtained by thickening the quiver. The TFTs are based on symmetric groups and defect observables associated with subgroups play an important role. We outline the application of the free field results to the construction of BPS operators in the case of non-zero super-potential.

71 citations

Journal ArticleDOI
TL;DR: In this paper, the authors derive the complete supergravity description of the N = 2 scalar potential which realizes a generic flux-compactification on a Calabi-Yau manifold.

71 citations


Network Information
Related Topics (5)
Supersymmetry
29.7K papers, 1.1M citations
97% related
Gauge theory
38.7K papers, 1.2M citations
96% related
Quantum chromodynamics
47.1K papers, 1.2M citations
94% related
Quantum field theory
24.6K papers, 749.9K citations
93% related
Higgs boson
33.6K papers, 961.7K citations
93% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202344
2022115
202175
202094
201994
2018101