scispace - formally typeset
Topic

Supramolecular chemistry

About: Supramolecular chemistry is a(n) research topic. Over the lifetime, 25159 publication(s) have been published within this topic receiving 878455 citation(s).
Papers
More filters

Journal ArticleDOI
01 Jan 2004-Chemical Reviews
Abstract: Although gold is the subject of one of the most ancient themes of investigation in science, its renaissance now leads to an exponentially increasing number of publications, especially in the context of emerging nanoscience and nanotechnology with nanoparticles and self-assembled monolayers (SAMs). We will limit the present review to gold nanoparticles (AuNPs), also called gold colloids. AuNPs are the most stable metal nanoparticles, and they present fascinating aspects such as their assembly of multiple types involving materials science, the behavior of the individual particles, size-related electronic, magnetic and optical properties (quantum size effect), and their applications to catalysis and biology. Their promises are in these fields as well as in the bottom-up approach of nanotechnology, and they will be key materials and building block in the 21st century. Whereas the extraction of gold started in the 5th millennium B.C. near Varna (Bulgaria) and reached 10 tons per year in Egypt around 1200-1300 B.C. when the marvelous statue of Touthankamon was constructed, it is probable that “soluble” gold appeared around the 5th or 4th century B.C. in Egypt and China. In antiquity, materials were used in an ecological sense for both aesthetic and curative purposes. Colloidal gold was used to make ruby glass 293 Chem. Rev. 2004, 104, 293−346

11,193 citations


MonographDOI
26 May 1995-
TL;DR: From molecular to supramolescular chemistry: concepts and language of supramolecular chemistry, molecular recognition, information, complementarity molecular receptors - design principles and more.
Abstract: Part 1 From molecular to supramolecular chemistry: concepts and language of supramolecular chemistry. Part 2 Molecular recognition: recognition, information, complementarity molecular receptors - design principles spherical recognition - cryptates of metal cations tetrahedral recognition by macrotricyclic cryptands recognition of ammonium ions and related substrates binding and recognition of neutral moelcules. Part 3 Anion co-ordination chemistry and the recognition of anionic substrates. Part 4 Coreceptor molecules and multiple recognition: dinuclear and polynuclear metal ion cryptates linear recognition of molecular length by ditopic coreceptors heterotopic coreceptors - cyclophane receptors, amphiphilic receptors, large molecular cage multiple recognition in metalloreceptors supramolecular dynamics. Part 5 Supramolecular reactivity and catalysis: catalysis by reactive macrocyclic cation receptor molecules catalysis by reactive anion receptor molecules catalysis with cyclophane type receptors supramolecular metallo-catalysis cocatalysis - catalysis of synthetic reactions biomolecular and abiotic catalysis. Part 6 Transport processes and carrier design: carrier-mediated transport cation-transport processes - cation carriers anion transport processes - anion carriers coupled transport processes electron-coupled transpoort in a redox gradient proton-coupled transport in a pH gradient light-coupled transport processes transfer via transmembrane channels. Part 7 From supermolecules to polymolecular assemblies: heterogeneous molecular recognition - supramolecular solid materials from endoreceptors to exoreceptors - molecular recognition at surfaces molecular and supramolecular morphogenesis supramolecular heterogeneous catalysis. Part 8 Molecular and supramolecular devices: molecular recognition, information and signals - semiochemistry supramolecular photochemistry - molecular and supramolecular photonic devices light conversion and energy transfer devices photosensitive molecular receptors photoinduced electron transfer in photoactive devices photoinduced reactions in supramolecular species non-linear optical properties of supramolecular species supramolecular effects in photochemical hole burning molecular and supramolecular electronic devices supramolecular electrochemistry electron conducting devices - molecular wires polarized molecular wires - rectifying devices modified and switchable molecular wires molecular magnetic devices molecular and supramolecular ionic devices tubular mesophases. (Part contents).

8,030 citations


Journal ArticleDOI
18 Aug 1995-Angewandte Chemie
Abstract: Whereas much of organic chemistry has classically dealt with the preparation and study of the properties of individual molecules, an increasingly significant portion of the activity in chemical research involves understanding and utilizing the nature of the interactions between molecules. Two representative areas of this evolution are supramolecular chemistry and molecular recognition. The interactions between molecules are governed by intermolecular forces whose energetic and geometric properties are much less well understood than those of classical chemical bonds between atoms. Among the strongest of these interactions, however, are hydrogen bonds, whose directional properties are better understood on the local level (that is, for a single hydrogen bond) than many other types of non-bonded interactions. Nevertheless, the means by which to characterize, understand, and predict the consequences of many hydrogen bonds among molecules, and the resulting formation of molecular aggregates (on the microscopic scale) or crystals (on the macroscopic scale) has remained largely enigmatic. One of the most promising systematic approaches to resolving this enigma was initially developed by the late M. C. Etter, who applied graph theory to recognize, and then utilize, patterns of hydrogen bonding for the understanding and design of molecular crystals. In working with Etter's original ideas the power and potential utility of this approach on one hand, and on the other, the need to develop and extend the initial Etter formalism was generally recognized. It with that latter purpose that we originally undertook the present review.

7,343 citations



Journal ArticleDOI
TL;DR: This work develops an approach to detect noncovalent interactions in real space, based on the electron density and its derivatives, which provides a rich representation of van der Waals interactions, hydrogen bonds, and steric repulsion in small molecules, molecular complexes, and solids.
Abstract: Molecular structure does not easily identify the intricate noncovalent interactions that govern many areas of biology and chemistry, including design of new materials and drugs. We develop an approach to detect noncovalent interactions in real space, based on the electron density and its derivatives. Our approach reveals the underlying chemistry that compliments the covalent structure. It provides a rich representation of van der Waals interactions, hydrogen bonds, and steric repulsion in small molecules, molecular complexes, and solids. Most importantly, the method, requiring only knowledge of the atomic coordinates, is efficient and applicable to large systems, such as proteins or DNA. Across these applications, a view of nonbonded interactions emerges as continuous surfaces rather than close contacts between atom pairs, offering rich insight into the design of new and improved ligands.

4,028 citations


Network Information
Related Topics (5)
Metal-organic framework

8.9K papers, 416.2K citations

94% related
Terpyridine

3.5K papers, 94.9K citations

93% related
Steric effects

16.1K papers, 319.6K citations

93% related
Supramolecular assembly

3.1K papers, 109.4K citations

93% related
Bipyridine

6.9K papers, 177.1K citations

93% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202231
20211,296
20201,316
20191,328
20181,341
20171,294

Top Attributes

Show by:

Topic's top 5 most impactful authors

Antonio Frontera

166 papers, 4.1K citations

Jean-Marie Lehn

128 papers, 32.2K citations

J. Fraser Stoddart

122 papers, 12.1K citations

Yu Liu

107 papers, 3.5K citations

Ulrich S. Schubert

84 papers, 4.4K citations