scispace - formally typeset
Topic

Surface coating

About: Surface coating is a(n) research topic. Over the lifetime, 30398 publication(s) have been published within this topic receiving 534772 citation(s).

...read more

Papers
More filters

Journal ArticleDOI
Abstract: Using two-phase (water–toluene) reduction of AuCl4– by sodium borohydride in the presence of an alkanethiol, solutions of 1–3 nm gold particles bearing a surface coating of thiol have been prepared and characterised; this novel material can be handled as a simple chemical compound.

...read more

5,936 citations


Journal ArticleDOI
Ajay Kumar Gupta1, Mona Gupta2Institutions (2)
01 Jun 2005-Biomaterials
TL;DR: This review discusses the synthetic chemistry, fluid stabilization and surface modification of superparamagnetic iron oxide nanoparticles, as well as their use for above biomedical applications.

...read more

Abstract: Superparamagnetic iron oxide nanoparticles (SPION) with appropriate surface chemistry have been widely used experimentally for numerous in vivo applications such as magnetic resonance imaging contrast enhancement, tissue repair, immunoassay, detoxification of biological fluids, hyperthermia, drug delivery and in cell separation, etc. All these biomedical and bioengineering applications require that these nanoparticles have high magnetization values and size smaller than 100 nm with overall narrow particle size distribution, so that the particles have uniform physical and chemical properties. In addition, these applications need special surface coating of the magnetic particles, which has to be not only non-toxic and biocompatible but also allow a targetable delivery with particle localization in a specific area. To this end, most work in this field has been done in improving the biocompatibility of the materials, but only a few scientific investigations and developments have been carried out in improving the quality of magnetic particles, their size distribution, their shape and surface in addition to characterizing them to get a protocol for the quality control of these particles. Nature of surface coatings and their subsequent geometric arrangement on the nanoparticles determine not only the overall size of the colloid but also play a significant role in biokinetics and biodistribution of nanoparticles in the body. The types of specific coating, or derivatization, for these nanoparticles depend on the end application and should be chosen by keeping a particular application in mind, whether it be aimed at inflammation response or anti-cancer agents. Magnetic nanoparticles can bind to drugs, proteins, enzymes, antibodies, or nucleotides and can be directed to an organ, tissue, or tumour using an external magnetic field or can be heated in alternating magnetic fields for use in hyperthermia. This review discusses the synthetic chemistry, fluid stabilization and surface modification of superparamagnetic iron oxide nanoparticles, as well as their use for above biomedical applications.

...read more

5,812 citations


Journal ArticleDOI
J.E. Gray1, B. Luan1Institutions (1)
Abstract: Magnesium and its alloys have excellent physical and mechanical properties for a number of applications. In particular its high strength:weight ratio makes it an ideal metal for automotive and aerospace applications, where weight reduction is of significant concern. Unfortunately, magnesium and its alloys are highly susceptible to corrosion, particularly in salt-spray conditions. This has limited its use in the automotive and aerospace industries, where exposure to harsh service conditions is unavoidable. The simplest way to avoid corrosion is to coat the magnesium-based substrate to prevent contact with the environment. This review details the state of the art in coating and surface modification technologies, applied to magnesium based substrates for improved corrosion and wear resistance. The topics covered include electrochemical plating, conversion coatings, anodizing, gas-phase deposition processes, laser surface alloying/cladding and organic coatings.

...read more

2,083 citations


Journal ArticleDOI
Abstract: Salts having a low melting point are liquid at room temperature, or even below, and form a new class of liquids usually called room temperature ionic liquids (RTIL). Information about RTILs can be found in the literature with such key words as: room temperature molten salt, low-temperature molten salt, ambient-temperature molten salt, liquid organic salt or simply ionic liquid. Their physicochemical properties are the same as high temperature ionic liquids, but the practical aspects of their maintenance or handling are different enough to merit a distinction. The class of ionic liquids, based on tetraalkylammonium cation and chloroaluminate anion, has been extensively studied since late 1970s of the XX century, following the works of Osteryoung. Systematic research on the application of chloroaluminate ionic liquids as solvents was performed in 1980s. However, ionic liquids based on aluminium halides are moisture sensitive. During the last decade an increasing number of new ionic liquids have been prepared and used as solvents. The general aim of this paper was to review the physical and chemical properties of RTILs from the point of view of their possible application as electrolytes in electrochemical processes and devices. The following points are discussed: melting and freezing, conductivity, viscosity, temperature dependence of conductivity, transport and transference numbers, electrochemical stability, possible application in aluminium electroplating, lithium batteries and in electrochemical capacitors.

...read more

2,061 citations


Journal ArticleDOI
Jung Soo Suk1, Qingguo Xu1, Namho Kim1, Justin Hanes1  +2 moreInstitutions (2)
TL;DR: The history of the development of PEGylated nanoparticle formulations for systemic administration is described, including how factors such as PEG molecular weight, PEG surface density, nanoparticle core properties, and repeated administration impact circulation time.

...read more

Abstract: Coating the surface of nanoparticles with polyethylene glycol (PEG), or "PEGylation", is a commonly used approach for improving the efficiency of drug and gene delivery to target cells and tissues. Building from the success of PEGylating proteins to improve systemic circulation time and decrease immunogenicity, the impact of PEG coatings on the fate of systemically administered nanoparticle formulations has, and continues to be, widely studied. PEG coatings on nanoparticles shield the surface from aggregation, opsonization, and phagocytosis, prolonging systemic circulation time. Here, we briefly describe the history of the development of PEGylated nanoparticle formulations for systemic administration, including how factors such as PEG molecular weight, PEG surface density, nanoparticle core properties, and repeated administration impact circulation time. A less frequently discussed topic, we then describe how PEG coatings on nanoparticles have also been utilized for overcoming various biological barriers to efficient drug and gene delivery associated with other modes of administration, ranging from gastrointestinal to ocular. Finally, we describe both methods for PEGylating nanoparticles and methods for characterizing PEG surface density, a key factor in the effectiveness of the PEG surface coating for improving drug and gene delivery.

...read more

1,630 citations


Network Information
Related Topics (5)
Scanning electron microscope

74.7K papers, 1.3M citations

93% related
Surface energy

17.8K papers, 509.6K citations

91% related
Carbon nanotube

109K papers, 3.6M citations

90% related
Coating

379.8K papers, 3.1M citations

90% related
Layer by layer

7.9K papers, 203.3K citations

90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202235
2021720
20201,127
20191,554
20181,726
20171,725

Top Attributes

Show by:

Topic's top 5 most impactful authors

Anees A. Ansari

9 papers, 141 citations

Philippe Bergonzo

7 papers, 83 citations

Niranjan Karak

7 papers, 256 citations

Ian G. Brown

7 papers, 352 citations

Liquan Chen

6 papers, 1.7K citations