scispace - formally typeset
Search or ask a question
Topic

Surface conductivity

About: Surface conductivity is a research topic. Over the lifetime, 2902 publications have been published within this topic receiving 69439 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an exact solution for the electromagnetic field due to an electric current in the presence of a surface conductivity model of graphene is obtained in terms of dyadic Green's functions represented as Sommerfeld integrals.
Abstract: An exact solution is obtained for the electromagnetic field due to an electric current in the presence of a surface conductivity model of graphene. The graphene is represented by an infinitesimally thin, local, and isotropic two-sided conductivity surface. The field is obtained in terms of dyadic Green’s functions represented as Sommerfeld integrals. The solution of plane wave reflection and transmission is presented, and surface wave propagation along graphene is studied via the poles of the Sommerfeld integrals. For isolated graphene characterized by complex surface conductivity σ=σ′+jσ″, a proper transverse-electric surface wave exists if and only if σ″>0 (associated with interband conductivity), and a proper transverse-magnetic surface wave exists for σ″<0 (associated with intraband conductivity). By tuning the chemical potential at infrared frequencies, the sign of σ″ can be varied, allowing for some control over surface wave properties.

2,304 citations

Journal ArticleDOI
TL;DR: A review of surface science studies of single crystal surfaces, but selected studies on powder and polycrystalline films are also incorporated in order to provide connecting points between surface sciences studies with the broader field of materials science of tin oxide as discussed by the authors.

2,232 citations

Journal ArticleDOI
TL;DR: In this article, a site-binding model of the oxide/aqueous electrolyte interface is introduced, in which the adsorbed counter ions form interfacial ion pairs with discrete charged surface groups.
Abstract: A site-binding model of the oxide/aqueous electrolyte interface is introduced, in which it is proposed that the adsorbed counter ions form interfacial ion pairs with discrete charged surface groups. This model is used to calculate theoretical surface charge densities of the potential-determining (H+/OH–) ions and the potential at the Outer Helmholtz Plane, which are shown to be consistent with experimental data for oxides. An explanation is provided for the difference between silica and most other oxides in terms of the dissociation constants of the surface hydroxyl groups.

1,231 citations

Journal ArticleDOI
TL;DR: Experimental evidence is given that hydrogen is only a necessary requirement for SC; exposure to air is also essential and a mechanism in which a redox reaction in an adsorbed water layer provides the electron sink for the subsurface hole accumulation layer is proposed.
Abstract: Hydrogen-terminated diamond exhibits a high surface conductivity (SC) that is commonly attributed to the direct action of hydrogen-related acceptors. We give experimental evidence that hydrogen is only a necessary requirement for SC; exposure to air is also essential. We propose a mechanism in which a redox reaction in an adsorbed water layer provides the electron sink for the subsurface hole accumulation layer. The model explains the experimental findings including the fact that hydrogenated diamond is unique among all semiconductors in this respect.

823 citations

Journal ArticleDOI
TL;DR: An approach to independently controlling κ based on altering the phonon band structure of a semiconductor thin film through the formation of a phononic nanomesh film is demonstrated, suggesting that this development is a step towards a coherent mechanism for lowering thermal conductivity.
Abstract: Controlling the thermal conductivity of a material independently of its electrical conductivity continues to be a goal for researchers working on thermoelectric materials for use in energy applications and in the cooling of integrated circuits. In principle, the thermal conductivity κ and the electrical conductivity σ may be independently optimized in semiconducting nanostructures because different length scales are associated with phonons (which carry heat) and electric charges (which carry current). Phonons are scattered at surfaces and interfaces, so κ generally decreases as the surface-to-volume ratio increases. In contrast, σ is less sensitive to a decrease in nanostructure size, although at sufficiently small sizes it will degrade through the scattering of charge carriers at interfaces. Here, we demonstrate an approach to independently controlling κ based on altering the phonon band structure of a semiconductor thin film through the formation of a phononic nanomesh film. These films are patterned with periodic spacings that are comparable to, or shorter than, the phonon mean free path. The nanomesh structure exhibits a substantially lower thermal conductivity than an equivalently prepared array of silicon nanowires, even though this array has a significantly higher surface-to-volume ratio. Bulk-like electrical conductivity is preserved. We suggest that this development is a step towards a coherent mechanism for lowering thermal conductivity.

653 citations


Network Information
Related Topics (5)
Dielectric
169.7K papers, 2.7M citations
90% related
Thin film
275.5K papers, 4.5M citations
88% related
Amorphous solid
117K papers, 2.2M citations
88% related
Oxide
213.4K papers, 3.6M citations
84% related
Raman spectroscopy
122.6K papers, 2.8M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202311
202221
202146
202064
201972
201888