scispace - formally typeset
Search or ask a question
Topic

Surface engineering

About: Surface engineering is a research topic. Over the lifetime, 2018 publications have been published within this topic receiving 53995 citations.


Papers
More filters
Journal ArticleDOI

[...]

TL;DR: This review discusses the synthetic chemistry, fluid stabilization and surface modification of superparamagnetic iron oxide nanoparticles, as well as their use for above biomedical applications.
Abstract: Superparamagnetic iron oxide nanoparticles (SPION) with appropriate surface chemistry have been widely used experimentally for numerous in vivo applications such as magnetic resonance imaging contrast enhancement, tissue repair, immunoassay, detoxification of biological fluids, hyperthermia, drug delivery and in cell separation, etc. All these biomedical and bioengineering applications require that these nanoparticles have high magnetization values and size smaller than 100 nm with overall narrow particle size distribution, so that the particles have uniform physical and chemical properties. In addition, these applications need special surface coating of the magnetic particles, which has to be not only non-toxic and biocompatible but also allow a targetable delivery with particle localization in a specific area. To this end, most work in this field has been done in improving the biocompatibility of the materials, but only a few scientific investigations and developments have been carried out in improving the quality of magnetic particles, their size distribution, their shape and surface in addition to characterizing them to get a protocol for the quality control of these particles. Nature of surface coatings and their subsequent geometric arrangement on the nanoparticles determine not only the overall size of the colloid but also play a significant role in biokinetics and biodistribution of nanoparticles in the body. The types of specific coating, or derivatization, for these nanoparticles depend on the end application and should be chosen by keeping a particular application in mind, whether it be aimed at inflammation response or anti-cancer agents. Magnetic nanoparticles can bind to drugs, proteins, enzymes, antibodies, or nucleotides and can be directed to an organ, tissue, or tumour using an external magnetic field or can be heated in alternating magnetic fields for use in hyperthermia. This review discusses the synthetic chemistry, fluid stabilization and surface modification of superparamagnetic iron oxide nanoparticles, as well as their use for above biomedical applications.

5,812 citations

Book

[...]

01 Jan 1992
TL;DR: In this paper, surface topography and surfaces in contact are discussed, as well as surface engineering in tribology, materials for bearings and sliding wear by hard particles, friction and friction.
Abstract: Preface * Introduction * Surface topography and surfaces in contact * Friction * Lubricants and lubrication * Sliding wear * Wear by hard particles * Wear and design * Surface engineering in tribology * Materials for bearings * Author index * Subject index.

2,558 citations

Journal ArticleDOI

[...]

TL;DR: The physical and chemical fundamentals of plasma electrolysis are discussed in this article, and the equipment and deposition procedures for coating production are described, and the effects of electrolyte composition and temperature on ignition voltage, discharge intensity and deposited layer thickness and composition are outlined.
Abstract: This paper overviews the relatively new surface engineering discipline of plasma electrolysis, the main derivative of this being plasma electrolytic deposition (PED), which includes techniques such as plasma electrolytic oxidation (PEO) and plasma electrolytic saturation (PES) processes such as plasma electrolytic nitriding/carburizing (PEN/PEC). In PED technology, spark or arc plasma micro-discharges in an aqueous solution are utilised to ionise gaseous media from the solution such that complex compounds are synthesised on the metal surface through the plasma chemical interactions. The physical and chemical fundamentals of plasma electrolysis are discussed here. The equipment and deposition procedures for coating production are described, and the effects of electrolyte composition and temperature on ignition voltage, discharge intensity and deposited layer thickness and composition are outlined. AC-pulse PEO treatment of aluminium in a suitable passivating electrolyte allows the formation of relatively thick (up to 500 μm) and hard (up to 23 GPa) surface layers with excellent adhesion to the substrate. A 10–20 μm thick surface compound layer (1200HV) and 200–300 μm inner diffusion layer with very good mechanical and corrosion-resistant properties can also be formed on steel substrates in only 3–5 min by use of the PEN/PEC saturation techniques. Details are given of the basic operational characteristics of the various techniques, and the physical, mechanical and tribological characteristics of coatings produced by plasma electrolytic treatments are presented.

2,347 citations

Journal ArticleDOI

[...]

TL;DR: In this paper, the authors present the state of the art in LST and the potential of this technology in various lubricated applications like mechanical seals, piston rings and thrust bearings.
Abstract: Surface texturing has emerged in the last decade as a viable option of surface engineering resulting in significant improvement in load capacity, wear resistance, friction coefficient etc. of tribological mechanical components. Various techniques can be employed for surface texturing but Laser Surface Texturing (LST) is probably the most advanced so far. LST produces a very large number of micro-dimples on the surface and each of these micro-dimples can serve either as a micro-hydrodynamic bearing in cases of full or mixed lubrication, a micro-reservoir for lubricant in cases of starved lubrication conditions, or a micro-trap for wear debris in either lubricated or dry sliding. The present paper reviews the current effort being made world wide on surface texturing in general and on laser surface texturing in particular. It presents the state of the art in LST and the potential of this technology in various lubricated applications like mechanical seals, piston rings and thrust bearings. The paper also describes some fundamental on going research around the world with LST.

1,001 citations

Journal ArticleDOI

[...]

TL;DR: The role of surface ligands in tuning and rationally designing properties of functional nanomaterials and their importance for biomedical and optoelectronic applications is focused on and an assessment of application-targeted surface engineering is concluded.
Abstract: All nanomaterials share a common feature of large surface-to-volume ratio, making their surfaces the dominant player in many physical and chemical processes. Surface ligands - molecules that bind to the surface - are an essential component of nanomaterial synthesis, processing and application. Understanding the structure and properties of nanoscale interfaces requires an intricate mix of concepts and techniques borrowed from surface science and coordination chemistry. Our Review elaborates these connections and discusses the bonding, electronic structure and chemical transformations at nanomaterial surfaces. We specifically focus on the role of surface ligands in tuning and rationally designing properties of functional nanomaterials. Given their importance for biomedical (imaging, diagnostics and therapeutics) and optoelectronic (light-emitting devices, transistors, solar cells) applications, we end with an assessment of application-targeted surface engineering.

990 citations

Network Information
Related Topics (5)
Coating
379.8K papers, 3.1M citations
88% related
Nanoparticle
85.9K papers, 2.6M citations
86% related
Carbon nanotube
109K papers, 3.6M citations
86% related
Oxide
213.4K papers, 3.6M citations
85% related
Graphene
144.5K papers, 4.9M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202339
202287
2021148
2020164
2019153
2018122