scispace - formally typeset
Search or ask a question
Topic

Surface modification

About: Surface modification is a research topic. Over the lifetime, 35544 publications have been published within this topic receiving 859567 citations.


Papers
More filters
Journal ArticleDOI
02 May 2011-Langmuir
TL;DR: A direct, head-to-head comparison of the efficacy of a zwitterionic versus a poly(ethylene glycol), PEG, coating in preventing protein adsorption to silica and aggregation of silica nanoparticles is presented.
Abstract: A direct, head-to-head comparison of the efficacy of a zwitterionic versus a poly(ethylene glycol), PEG, coating in preventing protein adsorption to silica and aggregation of silica nanoparticles is presented. The same siloxane coupling chemistry was employed to yield surfaces with similar coverages of both types of ligand. Nanoparticle and planar surfaces were challenged with salt, serum, lysozyme, and serum albumin at 25 and 37 °C. While both types of surface modification are highly effective in preventing protein adsorption and nanoparticle aggregation, the zwitterion provided monolayer-type coverage with minimal thickness, whereas the PEG appeared to yield a more three-dimensional coating. The mechanism for adsorption resistance is thought to be based on preventing ion pairing between protein and surface charges, which releases counterions and water molecules, an entropic driving force enough to overcome a disfavored enthalpy of adsorption.

220 citations

Journal ArticleDOI
03 Oct 2017
TL;DR: In this paper, the surface group coordination at the atomic level was investigated at the 2D level, and it was concluded that the F and O atoms compete for the DFT-predicted thermodynamically preferred site and that at room temperature that site is mostly occupied by F. At higher temperatures, F desorbs and is replaced by O.
Abstract: The two-dimensional (2D) MXene Ti3C2T x is functionalized by surface groups (T x ) that determine its surface properties for, e.g. electrochemical applications. The coordination and thermal properties of these surface groups has, to date, not been investigated at the atomic level, despite strong variations in the MXene properties that are predicted from different coordinations and from the identity of the functional groups. To alleviate this deficiency, and to characterize the functionalized surfaces of single MXene sheets, the present investigation combines atomically resolved in situ heating in a scanning transmission electron microscope (STEM) and STEM simulations with temperature-programmed x-ray photoelectron spectroscopy (TP-XPS) in the room temperature to 750 °C range. Using these techniques, we follow the surface group coordination at the atomic level. It is concluded that the F and O atoms compete for the DFT-predicted thermodynamically preferred site and that at room temperature that site is mostly occupied by F. At higher temperatures, F desorbs and is replaced by O. Depending on the O/F ratio, the surface bare MXene is exposed as F desorbs, which enables a route for tailored surface functionalization.

220 citations

Journal ArticleDOI
01 Mar 2000-Polymer
TL;DR: In this paper, a detailed study of the alkaline degradation of PVdF has been carried out by X-ray photoelectron spectroscopy, secondary ion mass spectrometry and Raman spectrographs to determine the composition of the modified layer.

220 citations

Journal ArticleDOI
TL;DR: In this article, the surface energy of the hole collector electrode of photovoltaic devices is modified by deposition of self-assembled monolayers to favor segregation of hole-accepting component of the blend to the substrate.
Abstract: Surface treatment and solvent evaporation control are used to promote vertical segregation in polyfluorene-blend thin films. This surface-mediated control of the compositional structure in the direction normal to the plane of the film has important implications for optimizing charge transport in solution-processed conjugated polymer-blend optoelectronics. Here, the surface energy of the hole-collector electrode of photovoltaic devices is modified by deposition of self-assembled monolayers to favor segregation of the hole-accepting component of the blend to the substrate. Devices fabricated with intentionally vertically segregated blends showed external quantum efficiencies of up to 14%, which is ten times higher than that of devices fabricated without surface modification.

220 citations

Journal ArticleDOI
TL;DR: Surface modification of acid-pretreated titanium with 3-aminopropyltriethoxylsilane in dry toluene resulted in covalently bonded siloxane films with surface coverage that was relatively controllable by regulating the reaction conditions.
Abstract: Surface modification of acid-pretreated titanium with 3-aminopropyltriethoxylsilane (APTES) in dry toluene resulted in covalently bonded siloxane films with surface coverage that was relatively controllable by regulating the reaction conditions. A hetero-bifunctional cross-linker, N-succinimidyl-3-maleimidopropionate (SMP), reacted with the terminal amino groups, forming the exposed maleimide groups. Finally, a model cell-binding peptide, Arg–Gly–Asp–Cys (RGDC), was immobilized on the surface through covalent addition of the cysteine thiol groups to the maleimide groups. X-ray photoelectron spectroscopy, radiolabelling techniques, and ellipsometry were used to quantify and characterize the modified surfaces.

220 citations


Network Information
Related Topics (5)
Oxide
213.4K papers, 3.6M citations
92% related
Carbon nanotube
109K papers, 3.6M citations
92% related
Graphene
144.5K papers, 4.9M citations
90% related
Aqueous solution
189.5K papers, 3.4M citations
88% related
Catalysis
400.9K papers, 8.7M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232,530
20225,209
20211,961
20202,217
20192,313
20182,263