scispace - formally typeset
Search or ask a question
Topic

Surface modification

About: Surface modification is a research topic. Over the lifetime, 35544 publications have been published within this topic receiving 859567 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a broad review of the applications of non-covalently functionalized graphene and its derivatives is presented in detail, including field effect transistors, organic optoelectronics, and molecular sensing.

172 citations

Journal ArticleDOI
TL;DR: The thermal conductivities of composites with an epoxy-terminated dimethylsiloxane (ETDS) matrix and boron nitride powder fillers were investigated in this article.

172 citations

Journal ArticleDOI
TL;DR: In this paper, an amino functionalized carbon nanotubes (CNTs)-containing sizing agent was prepared for improving the interface bonding and impact toughness of carbon fibers (CFs) reinforced unsaturated polyester (UP) composites.

172 citations

Journal ArticleDOI
TL;DR: Graphene from two different preparative routes was successfully functionalized with 4-propargyloxybenzenediazonium tetrafluoroborate in order to study a subsequent attachment by click chemistry of a short chain polyethylene glycol with terminal carboxylic end group (PEG-COOH) as discussed by the authors.
Abstract: Graphene from two different preparative routes was successfully functionalized with 4-propargyloxybenzenediazonium tetrafluoroborate in order to study a subsequent attachment by click chemistry (1,3-dipolar azide–alkyne cycloaddition) of a short chain polyethylene glycol with terminal carboxylic end group (PEG-COOH). The reaction steps were studied by FTIR and Raman spectroscopies, as well as zeta-potential and surface tension measurements. In the first route, pristine graphene was surfactant dispersed from a stage controlled expanded graphite before reaction, resulting in colloidally stable dispersions after dialysis removal of the surfactant following the two functionalization steps. The chemistry was shown to increase the zeta-potential from −45.3 to −54.6 mV and increase the surface tension from 48.5 to 63.0 mN/m compared to those of the precursor solution. The magnitudes of the zeta-potential and the resulting solution concentration were shown to increase with grafting density up to 14.2 μg/mL. A col...

172 citations

Journal ArticleDOI
10 Aug 2004-Langmuir
TL;DR: This study has covalently attached PEG to nanoporous alumina surfaces to improve their nonfouling properties and found that with an increase in concentration and immobilization time, the grafting density of PEG also increases.
Abstract: Nanoporous alumina surfaces have a variety of applications in biosensors, biofiltration, and targeted drug delivery. However, the fabrication route to create these nanopores in alumina results in surface defects in the crystal lattice. This results in inherent charge on the porous surface causing biofouling, that is, nonspecific adsorption of biomolecules. Poly(ethylene glycol) (PEG) is known to form biocompatible nonfouling films on silicon surfaces. However, its application to alumina surfaces is very limited and has not been well investigated. In this study, we have covalently attached PEG to nanoporous alumina surfaces to improve their nonfouling properties. A PEG-silane coupling technique was used to modify the surface. Different concentrations of PEG for different immobilization times were used to form PEG films of various grafting densities. X-ray photoelectron spectroscopy (XPS) was used to verify the presence of PEG moieties on the alumina surface. High-resolution C1s spectra show that with an increase in concentration and immobilization time, the grafting density of PEG also increases. Further, a standard overlayer model was used to calculate the thickness of PEG films formed using the XPS intensities of the Al2p peaks. The films formed by this technique are less than 2.5 nm thick, suggesting that such films will not clog the pores which are in the range of 70-80 nm.

172 citations


Network Information
Related Topics (5)
Oxide
213.4K papers, 3.6M citations
92% related
Carbon nanotube
109K papers, 3.6M citations
92% related
Graphene
144.5K papers, 4.9M citations
90% related
Aqueous solution
189.5K papers, 3.4M citations
88% related
Catalysis
400.9K papers, 8.7M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232,530
20225,209
20211,961
20202,217
20192,313
20182,263