scispace - formally typeset
Search or ask a question
Topic

Surface modification

About: Surface modification is a research topic. Over the lifetime, 35544 publications have been published within this topic receiving 859567 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A number of surface modification techniques using immobilization of biofunctional molecules of Titanium (Ti) for dental implants as well as surface properties of Ti and Ti alloys have been developed.
Abstract: A number of surface modification techniques using immobilization of biofunctional molecules of Titanium (Ti) for dental implants as well as surface properties of Ti and Ti alloys have been developed. The method using passive surface oxide film on titanium takes advantage of the fact that the surface film on Ti consists mainly of amorphous or low-crystalline and non-stoichiometric TiO2. In another method, the reconstruction of passive films, calcium phosphate naturally forms on Ti and its alloys, which is characteristic of Ti. A third method uses the surface active hydroxyl group. The oxide surface immediately reacts with water molecules and hydroxyl groups are formed. The hydroxyl groups dissociate in aqueous solutions and show acidic and basic properties. Several additional methods are also possible, including surface modification techniques, immobilization of poly(ethylene glycol), and immobilization of biomolecules such as bone morphogenetic protein, peptide, collagen, hydrogel, and gelatin.

154 citations

Journal ArticleDOI
TL;DR: CoF(3) aqueous solution was used to modify the surface of Ti-doped iron oxide thin film photoanodes to negatively shift the flat-band potential and allow photogenerated electrons to directly reduce water to hydrogen without an external bias.

154 citations

Journal ArticleDOI
30 Apr 2008-Langmuir
TL;DR: F Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy showed important variations of the particle surface state with functionalization whereas their structure differs only slightly.
Abstract: Platinum nanoparticles with a mean size of 1.7 nm were synthesized by reduction in sodium acetate solution in 1,2-ethanediol. The particles were then functionalized with dodecylamine, dodecanethiol, and omega-mercapto-undecanoic acid (MUDA). Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) showed important variations of the particle surface state with functionalization whereas their structure differs only slightly. Platinum-to-sulfur charge transfer inferred from XPS of thiol-coated particles enabled the identification of the formation of Pt (delta+)-S (delta-) bonds. The native carbon monoxide (CO) at the surface of the particles was a very efficient probe for following the functionalization of the particles by FTIR. The red shift of nu(CO) accounts for the nature of the ligands at the surface of the particles and also for their degree of functionalization. Immobilization on alumina substrates of particles functionalized with MUDA was realized by immersion in colloidal solutions. Free molecules, isolated particles, and aggregates of particles interconnected by hydrogen bonds at the surface of alumina were evidenced by FTIR. With successive washings, the energy variation of the CO stretch of carbon monoxide and of carboxylic acid groups and the relative intensity nu(CH2)/nu(CO) showed that the free molecules are eliminated first, followed by aggregates and less-functionalized particles. Particles presenting a high degree of functionalization by MUDA remain and interact strongly with alumina.

154 citations

01 Jan 2009
TL;DR: In this paper, a cross-linked poly(divinylbenzene) (pDVB) microspheres were functionalized using both thiol-ene chemistry and azide-alkyne click reactions.
Abstract: We report the functionalization of cross-linked poly(divinylbenzene) (pDVB) microspheres using both thiol-ene chemistry and azide-alkyne click reactions. The RAFT technique was carried out to synthesize SH-functionalized poly(N-isopropylacrylimide) (pNIPAAm) and utilized to generate pNIPAAm surface-modified microspheres via thiol-ene modification. The accessible double bonds on the surface of the microspheres allow the direct coupling with thiol-end functionalized pNIPAAm. In a second approach, pDVB microspheres were grafted with poly(2-hydroxyethyl methacrylate) (pHEMA). For this purpose, the residual double bonds on the microspheres surface were used to attach azide groups via the thiol-ene approach of 1-azido-undecane-11-thiol. In a second step, alkyne endfunctionalized pHEMA was used to graft pHEMA to the azide-modified surface via click-chemistry (Huisgen 1,3-dipolar cycloaddition). The surface-sensitive characterization methods X-ray photoelectron spectroscopy, scanning-electron microscopy and FT-IR transmission spectroscopy were employed to characterize the successful surface modification of the microspheres. In addition, fluorescence microscopy confirms the presence of grafted pHEMA chains after labeling with Rhodamine B.

154 citations

Journal ArticleDOI
TL;DR: Results suggested that silk fibroin was used to modifyPDLLA surface via WSC and that entrapment could improve the interactions between osteoblasts and PDLLA films.

154 citations


Network Information
Related Topics (5)
Oxide
213.4K papers, 3.6M citations
92% related
Carbon nanotube
109K papers, 3.6M citations
92% related
Graphene
144.5K papers, 4.9M citations
90% related
Aqueous solution
189.5K papers, 3.4M citations
88% related
Catalysis
400.9K papers, 8.7M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232,530
20225,209
20211,961
20202,217
20192,313
20182,263