scispace - formally typeset
Search or ask a question
Topic

Surface modification

About: Surface modification is a research topic. Over the lifetime, 35544 publications have been published within this topic receiving 859567 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A hierarchical surface modification strategy is reported, first by coating a gold surface with a self-assembled monolayer (SAM) designed to attract or probe for analytes and then by grafting a non-fouling zwitterionic polymer brush layer to effectively repel protein fouling.
Abstract: Surface-enhanced Raman spectroscopy (SERS) is an ultrasensitive analytical technique with molecular specificity, making it an ideal candidate for therapeutic drug monitoring (TDM). However, in critical diagnostic media including blood, nonspecific protein adsorption coupled with weak surface affinities and small Raman activities of many analytes hinder the TDM application of SERS. Here we report a hierarchical surface modification strategy, first by coating a gold surface with a self-assembled monolayer (SAM) designed to attract or probe for analytes and then by grafting a non-fouling zwitterionic polymer brush layer to effectively repel protein fouling. We demonstrate how this modification can enable TDM applications by quantitatively and dynamically measuring the concentrations of several analytes-including an anticancer drug (doxorubicin), several TDM-requiring antidepressant and anti-seizure drugs, fructose and blood pH-in undiluted plasma. This hierarchical surface chemistry is widely applicable to many analytes and provides a generalized platform for SERS-based biosensing in complex real-world media.

154 citations

Journal ArticleDOI
01 Jun 2014-Small
TL;DR: In this paper, a mixture of chitosan and dopamine-modified hyaluronic acid (HA-DN) was used to form surface-adherent dopamine films.
Abstract: In a marine environment, specific proteins are secreted by mussels and used as a bioglue to stick to a surface. These mussel proteins present an unusual amino acid 3,4-dihydroxyphenylalanine (known as DOPA). The outstanding adhesive properties of these materials in the sea harsh conditions have been attributed to the presence of the catechol groups present in DOPA. Inspired by the structure and composition of these adhesive proteins, dopamine-modified hyaluronic acid (HA-DN) prepared by carbodiimide chemistry is used to form thin and surface-adherent dopamine films. This conjugate was characterized by distinct techniques, such as nuclear magnetic resonance and ultraviolet spectrophotometry. Multilayer films are developed based on chitosan and HA-DN to form polymeric coatings using the layer-by-layer methodology. The nanostructured films formation is monitored by quartz crystal microbalance. The film surface is characterized by atomic force microscopy and scanning electron microscopy. Water contact angle measurements are also conducted. The adhesion properties are analyzed showing that the nanostructured films with dopamine promote an improved adhesion. In vitro tests show an enhanced cell adhesion, proliferation and viability for the biomimetic films with catechol groups, demonstrating their potential to be used in distinct biomedical applications.

154 citations

Journal ArticleDOI
TL;DR: In this paper, a brief overview of surface engineering of the Ti-based alloys from the perspective of electrochemistry is given, which mainly focuses on three major electrochemical techniques: low voltage anodization, micro-arc oxidation, and electrodeposition.

154 citations

Journal ArticleDOI
TL;DR: The electrophoresis of proteins was investigated using poly(dimethylsiloxane) (PDMS) microfluidic chips whose surfaces were modified with polyacrylamide through atom-transfer radical polymerization, and the resistance to protein adsorption was studied by open-channel electrophoring for bovine serum albumin labeled with fluorophor.
Abstract: The electrophoresis of proteins was investigated using poly(dimethylsiloxane) (PDMS) microfluidic chips whose surfaces were modified with polyacrylamide through atom-transfer radical polymerization. PDMS microchips were made using a glass replica to mold channels 10 microm high and 30 microm wide, with a T-intersection. The surface modification of the channels involved surface oxidation, followed by the formation of a self-assembled monolayer of benzyl chloride initiators, and then atom-transfer radical polymerization to grow a thin layer of covalently bonded polyacrylamide. The channels filled spontaneously with aqueous buffer due to the hydrophilicity of the coating. The resistance to protein adsorption was studied by open-channel electrophoresis for bovine serum albumin labeled with fluorophor. A plate height of 30 microm, corresponding to an efficiency of 33 000 plates/m, was obtained for field strengths from 18 to 889 V/cm. The lack of dependence of plate height on field strength indicates that there is no detectable contribution to broadening from adsorption. A 2- to 3-fold larger plate height was obtained for electrophoresis in a 50-cm polyacrylamide-coated silica capillary, and the shape of the electropherogram indicated the efficiency is limited by a distribution of species. The commercial capillary exhibited both reversible and irreversible adsorption of protein, whereas the PDMS microchip exhibited neither. A separation of lysozyme and cytochrome c in 35 s was demonstrated for the PDMS microchip.

154 citations

Journal ArticleDOI
TL;DR: It seems that the electrode sensitivity is directly controllable, and the multilayer-forming strategy with partial ferrocenyl-tethered dendrimers is useful for the construction of reagentless biosensors.
Abstract: Poly(amidoamine) dendrimers having various degrees of modification with the redox-active ferrocenyls were prepared by controlling the molar ratio of ferrocenecarboxaldehyde to amine groups of dendrimers. By alternate layer-by-layer depositions of partial ferrocenyl-tethered dendrimers (Fc-D) with periodate-oxidized glucose oxidase (GOx) on a Au surface, an electrochemically and enzymatically active multilayered assembly of enzyme was constructed. The resulting GOx/Fc-D multilayer-associated electrodes were electrochemically analyzed, and the surface concentration of ferrocenyl groups, active enzyme coverage, and sensitivity were estimated. A 32% dendrimer modification level of surface amines to ferrocenyls was found to be an optimum in terms of enzyme-dendrimer network formation, electrochemical interconnectivity of ferrocenyls, and electrode sensitivity. With the prepared Fc(32%)-tethered dendrimers, mono- and multilayered GOx/Fc-D electrodes were constructed, and their electrochemical and catalytic properties were characterized. The bioelectrocatalytic signals from the multilayered GOx/Fc-D electrodes were shown to be directly correlated to the number of deposited bilayers. From this result, it seems that the electrode sensitivity is directly controllable, and the multilayer-forming strategy with partial ferrocenyl-tethered dendrimers is useful for the construction of reagentless biosensors.

153 citations


Network Information
Related Topics (5)
Oxide
213.4K papers, 3.6M citations
92% related
Carbon nanotube
109K papers, 3.6M citations
92% related
Graphene
144.5K papers, 4.9M citations
90% related
Aqueous solution
189.5K papers, 3.4M citations
88% related
Catalysis
400.9K papers, 8.7M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232,530
20225,209
20211,961
20202,217
20192,313
20182,263