scispace - formally typeset
Search or ask a question
Topic

Surface modification

About: Surface modification is a research topic. Over the lifetime, 35544 publications have been published within this topic receiving 859567 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Various routes for the surface modification of UCNPs are introduced and various analytical methods that enable a thorough examination of the progress and success of the surface functionalization are covered.
Abstract: Photon-upconverting nanoparticles (UCNPs) can be excited by near-infrared light and emit visible light (anti-Stokes emission) which prevents autofluorescence and light scattering of biological samples. The potential for background-free imaging has attracted wide interest in UCNPs in recent years. Small and homogeneous lanthanide-doped UCNPs that display high upconversion efficiency have typically been synthesized in organic solvents. Bioanalytical applications, however, require a subsequent phase transfer to aqueous solutions. Hence, the surface properties of UCNPs must be well designed and characterized to grant both a stable aqueous colloidal dispersion and the ability to conjugate biomolecules and other ligands on the nanoparticle surface. In this review, we introduce various routes for the surface modification of UCNPs and critically discuss their advantages and disadvantages. The last part covers various analytical methods that enable a thorough examination of the progress and success of the surface functionalization.

369 citations

01 Jan 2010
TL;DR: In this paper, a method of simultaneous reduction and surface funcionalization of graphene oxide by a one-step poly(norepinephrine) funcionalisation was presented, which can be a useful platform for graphene-based ano-composites.
Abstract: his study presents a method of simultaneous reduction and surface funcionalization of graphene oxide by a one-step poly(norepinephrine) funcionalization. The pH-induced aqueous functionalization of graphene oxide y poly(norepinephrine), a catecholamine polymer inspired by the robust dhesion of marine mussels, chemically reduced and functionalized graphene xide. Moreover, the polymerized norepinephrine (pNor) layer provided mulifunctionality on the reduced graphene oxide that includes surface-initiated olymerization and spontaneous metallic nanoparticle formation. This facile urface modifi cation strategy can be a useful platform for graphene-based ano-composites.

368 citations

Journal ArticleDOI
TL;DR: The adhesive proteins secreted by mussels are the inspiration behind a versatile approach to the surface modification of a wide range of inorganic and organic materials, resulting in the fabrication of multifunctional coatings for a variety of applications.
Abstract: The adhesive proteins secreted by mussels are the inspiration behind a versatile approach to the surface modification of a wide range of inorganic and organic materials, resulting in the fabrication of multifunctional coatings for a variety of applications.

364 citations

Journal ArticleDOI
TL;DR: Thermogravmetric analysis (TGA) shows that the nondestroyed graphene structure provides greater thermal stability not only for the grafted molecules but also, more importantly, for the graphene itself, compared to the free-radical grafting method.
Abstract: When fabricated by thermal exfoliation, graphene can be covalently functionalized more easily by applying a direct ring-opening reaction between the residual epoxide functional groups on the graphene and the amine-bearing molecules. Investigation by X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and transmission electron microscopy (TEM) all confirm that these molecules were covalently grafted to the surface of graphene. The resulting dispersion in an organic solvent demonstrated a long-term homogeneous stability of the products. Furthermore, comparison with traditional free radical functionalization shows the extent of the defects characterized by TEM and Raman spectroscopy and reveals that direct functionalization enables graphene to be covalently functionalized on the surface without causing any further damage to the surface structure. Thermogravmetric analysis (TGA) shows that the nondestroyed graphene structure provides greater thermal stability not only for the grafted molecules but als...

362 citations

Journal ArticleDOI
06 Apr 2009-Langmuir
TL;DR: The synthesis of cellulose nanocrystals grafted by polystyrene chains via surface-initiated ATRP is reported, able to produce cellulose nanoparticles with varying grafting densities and varying polymer brush length through polymerization control.
Abstract: This paper reports the synthesis of cellulose nanocrystals grafted by polystyrene chains via surface-initiated ATRP. Naturally occurring cellulose was first hydrolyzed to obtain cellulose nanocrystals. Their surface was then chemically modified using 2-bromoisobutyryl bromide to introduce initiating sites for ATRP. A varying extent of surface modification was achieved by changing reaction conditions. Further initiation of styrene polymerization from these modified nanocrystals with a CuBr/PMDETA (N,N,N′,N′,N′′-pentamethyldiethylenetriamine) catalytic system and in the presence of a sacrificial initiator produced polysaccharide nanocrystals grafted by polystyrene chains. A range of nanocrystals-g-polystyrene with different graft lengths (theoretical polymerization degree = 27−171) was synthesized through this method and characterized by elemental analysis, XPS, FT-IR, TEM, and contact angle measurements. We are thus able to produce cellulose nanoparticles with varying grafting densities (by altering extent...

362 citations


Network Information
Related Topics (5)
Oxide
213.4K papers, 3.6M citations
92% related
Carbon nanotube
109K papers, 3.6M citations
92% related
Graphene
144.5K papers, 4.9M citations
90% related
Aqueous solution
189.5K papers, 3.4M citations
88% related
Catalysis
400.9K papers, 8.7M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232,530
20225,209
20211,961
20202,217
20192,313
20182,263