scispace - formally typeset
Search or ask a question
Topic

Surface modification

About: Surface modification is a research topic. Over the lifetime, 35544 publications have been published within this topic receiving 859567 citations.


Papers
More filters
Journal ArticleDOI
11 Feb 2013-Small
TL;DR: A detailed and integrated model describes factors influencing these electrical characteristics of functionalized graphene (covalent bonds, adsorption, π-π bonds, and lattice incorporation) and a few graphenic materials are also identified where further studies are essential to understand the effect of their functionalization.
Abstract: Functionalization of graphene is essential to interface it with other moieties to expand the scope of its electrical/electronic applications. However, chemical functionalization and/or molecular interactions on graphene sensitively modulate its electrical properties. To evaluate and take advantage of the properties of functionalized graphene, it is important to understand how its electrical attributes (such as carrier scattering, carrier concentration, charge polarity, quantum-capacitance enhanced doping, energy levels, transport mechanisms, and orbital hybridization of energy-bands) are influenced by a change in carbon's structural conformation, hybridization state, chemical potential, local energy levels, and dopant/interface coupling induced via functionalization or molecular interactions. Here, a detailed and integrated model describes factors influencing these electrical characteristics of functionalized graphene (covalent bonds, adsorption, π-π bonds, and lattice incorporation). The electrical properties are governed via three mechanisms: (a) conversion of carbon's hybridized state, (b) dipole interactions enhanced via quantum capacitance, and (c) orbital hybridization with an interfacing molecule. A few graphenic materials are also identified where further studies are essential to understand the effect of their functionalization.

269 citations

Journal ArticleDOI
TL;DR: In this article, the authors illustrate the use of an atmospheric plasma to enhance the adhesion characteristics of low-density polyethylene (LDPE) and poly(ethylene terephthalate) (PET).
Abstract: An atmospheric pressure non-equilibrium plasma (APNEP) developed in the UK by EA Technology Ltd is currently being investigated in collaboration with the University of Surrey. Of the many applications of surface modification that can be induced using plasmas, adhesion enhancement is one of the most commercially important. In this paper, we illustrate the use of an atmospheric plasma to enhance the adhesion characteristics of low-density polyethylene (LDPE) and poly(ethylene terephthalate) (PET). The polymers were treated in the remote afterglow region of an atmospheric pressure plasma to avoid the thermal effects that can cause degradation for thermally sensitive materials when placed in direct contact with the plasma. Reactive (oxygen containing) and inert (oxygen free) atmospheric plasmas rapidly impart adhesion enhancement by a factor of two to ten as measured by 180° peel tests. However, extended exposure to the atmospheric plasma does not impart additional adhesion enhancement as the surface is ablated revealing the underlying polymer with poor adhesive characteristics. In contrast, vacuum plasma treated LDPE and PET show increased adhesion with extended plasma treatment. An adhesion enhancement in excess of two to three orders of magnitude was found to be achievable for vacuum plasma treatment times greater than 10 min.

269 citations

Journal ArticleDOI
TL;DR: Subsequent covalent bioconjugation of the aldehyde‐functionalized Au@SiO2 nanoparticles with various biomolecules is successfully employed to make robust nanoprobes for fast, colorimetric DNA and protein detection based on the sequence‐specific hybridization properties of DNA and the specific binding affinity between proteins, respectively.
Abstract: Herein, we report an efficient process for preparing monodisperse Au@SiO2 nanoparticles using homogeneous shaking and without the use of surface-coupling silane agents or large stabilizers. The resulting pure-silica surface of the Au@SiO2 nanoparticles is very important for straightforward surface functionalization with different functional groups via well-established silica surface chemistry. Subsequent covalent bioconjugation of the aldehyde-functionalized Au@SiO2 nanoparticles with various biomolecules is successfully employed to make robust nanoprobes for fast, colorimetric DNA and protein detection based on the sequence-specific hybridization properties of DNA and the specific binding affinity between proteins, respectively.

269 citations

Patent
19 Sep 1997
TL;DR: In this paper, the authors describe novel compositions comprised of at least one bead conjugated to a solid support and further conjugating to at least 1 nucleic acid, and the preferred methods for making the novel compositions are described.
Abstract: Novel compositions comprised of at least one bead conjugated to a solid support and further conjugated to at least one nucleic acid and preferred methods for making the novel compositions are described. As compared to “flat” surfaces, beads linked to a solid support provide an increased surface area for immobilization of nucleic acids. Furthermore, by selecting a bead with the desired functionality, a practitioner can select a functionalization chemistry for immobilizing nucleic acids, which is different from the chemistry of the solid support.

268 citations

Journal ArticleDOI
TL;DR: Recent studies reported in the literature to functionalize scaffolds in the context of CTE, are discussed and the results of novel promising strategies and techniques are discussed.
Abstract: The development of biomaterials for cardiac tissue engineering (CTE) is challenging, primarily owing to the requirement of achieving a surface with favourable characteristics that enhances cell attachment and maturation. The biomaterial surface plays a crucial role as it forms the interface between the scaffold (or cardiac patch) and the cells. In the field of CTE, synthetic polymers (polyglycerol sebacate, polyethylene glycol, polyglycolic acid, poly-l-lactide, polyvinyl alcohol, polycaprolactone, polyurethanes and poly(N-isopropylacrylamide)) have been proven to exhibit suitable biodegradable and mechanical properties. Despite the fact that they show the required biocompatible behaviour, most synthetic polymers exhibit poor cell attachment capability. These synthetic polymers are mostly hydrophobic and lack cell recognition sites, limiting their application. Therefore, biofunctionalization of these biomaterials to enhance cell attachment and cell material interaction is being widely investigated. There are numerous approaches for functionalizing a material, which can be classified as mechanical, physical, chemical and biological. In this review, recent studies reported in the literature to functionalize scaffolds in the context of CTE, are discussed. Surface, morphological, chemical and biological modifications are introduced and the results of novel promising strategies and techniques are discussed.

267 citations


Network Information
Related Topics (5)
Oxide
213.4K papers, 3.6M citations
92% related
Carbon nanotube
109K papers, 3.6M citations
92% related
Graphene
144.5K papers, 4.9M citations
90% related
Aqueous solution
189.5K papers, 3.4M citations
88% related
Catalysis
400.9K papers, 8.7M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232,530
20225,209
20211,961
20202,217
20192,313
20182,263