scispace - formally typeset
Search or ask a question
Topic

Surface plasmon

About: Surface plasmon is a research topic. Over the lifetime, 23054 publications have been published within this topic receiving 690954 citations. The topic is also known as: Surface elementary excitation & Surface plasmons.


Papers
More filters
Journal ArticleDOI
07 Feb 1996-Langmuir
TL;DR: In this paper, the use of optical measurements to monitor electrochemical changes on the surface of nanosized metal particles is discussed within the Drude model, and the absorption spectrum of a metal sol in water is shown to be strongly affected by cathodic or anodic polarization, chemisorption, metal adatom deposition, and alloying.
Abstract: The use of optical measurements to monitor electrochemical changes on the surface of nanosized metal particles is discussed within the Drude model. The absorption spectrum of a metal sol in water is shown to be strongly affected by cathodic or anodic polarization, chemisorption, metal adatom deposition, and alloying. Anion adsorption leads to strong damping of the free electron absorption. Cathodic polarization leads to anion desorption. Underpotential deposition (upd) of electropositive metal layers results in dramatic blue-shifts of the surface plasmon band of the substrate. The deposition of just 0.1 monolayer can be readily detected by eye. In some cases alloying occurs spontaneously during upd. Alloy formation can be ascertained from the optical absorption spectrum in the case of gold deposition onto silver sols. The underpotential deposition of silver adatoms onto palladium leads to the formation of a homogeneous silver shell, but the mean free path is less than predicted, due to lattice strain in t...

3,454 citations

Journal ArticleDOI

3,326 citations

Journal ArticleDOI
TL;DR: A number of applications are presented that take advantage of the electromagnetic field enhancement of the radiative properties of noble metal nanoparticles resulting from the surface plasmon oscillations.
Abstract: This tutorial review presents an introduction to the field of noble metal nanoparticles and their current applications. The origin of the surface plasmon resonance and synthesis procedures are described. A number of applications are presented that take advantage of the electromagnetic field enhancement of the radiative properties of noble metal nanoparticles resulting from the surface plasmon oscillations.

2,811 citations

Journal ArticleDOI
TL;DR: In this paper, it has been shown that the non-radiative mode excited by light can also radiate under certain conditions if they are excited by electrons (grazing incidence of electrons on a rough surface or at normal incidence on a grating).
Abstract: There are two modes of surface plasma waves: 1) Non-radiative modes with phase velocities Cü/k smaller than the velocity of light c. They cannot decay into photons in general. 2) Radiative modes with (o/k > c which couple directly with photons 1. The following paper is concerned with the excitation of these modes by light and their decay into photons. It has been shown that the radiative mode on thin silverand potassium-films can be excited by light and that the mode reradiates light almost into all directions with an intensity maximum at the plasma frequency cOp 2. It had been further observed that the non-radiative modes radiate under certain conditions if they are excited by electrons (grazing incidence of electrons on . a rough surface3 or at normal incidence on a grating 4) . The mechanism of this emission is in these cases always the same: The \"wave vector\" of the roughness of the surface or its irregularity changes the plasmon wave vector k so that a) in the case of the radiative mode light emission is found in directions in addition to that of reflexion and transmission, b) in the case of the non-radiative mode its wave vector is reduced so that the condition /c0, the wave vector of the inhomogeneous wave is (co/c) • Vsq' sin 0O (fq = 2.16 for quartz) and thus can excite a non radiative mode on the boundary of the prism for j/fq sin 0O > 1 or 90° > @o > 43°. If one vaporises a silver film directly on the quartz surface the inhomogeneous light wave penetrates into the silver film and excites a nonradiative mode on the boundary silver/air. The excitation will be highest for those frequencies which fulfill the dispersion relation of these surface plasmons.

2,790 citations

Journal ArticleDOI
06 Aug 2004-Science
TL;DR: It is established that electromagnetic waves in both materials are governed by an effective permittivity of the same plasma form, which allows the creation of designer surface plasmons with almost arbitrary dispersion in frequency and in space.
Abstract: Metals such as silver support surface plasmons: electromagnetic surface excitations localized near the surface that originate from the free electrons of the metal. Surface modes are also observed on highly conducting surfaces perforated by holes. We establish a close connection between the two, showing that electromagnetic waves in both materials are governed by an effective permittivity of the same plasma form. The size and spacing of holes can readily be controlled on all relevant length scales, which allows the creation of designer surface plasmons with almost arbitrary dispersion in frequency and in space, opening new vistas in surface plasmon optics.

2,740 citations


Network Information
Related Topics (5)
Band gap
86.8K papers, 2.2M citations
91% related
Graphene
144.5K papers, 4.9M citations
90% related
Thin film
275.5K papers, 4.5M citations
90% related
Raman spectroscopy
122.6K papers, 2.8M citations
88% related
Carbon nanotube
109K papers, 3.6M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023307
2022675
2021551
2020727
2019857
2018951