scispace - formally typeset
Search or ask a question
Topic

Surface plasmon resonance

About: Surface plasmon resonance is a research topic. Over the lifetime, 24909 publications have been published within this topic receiving 810976 citations. The topic is also known as: Surface plasmon resonance & SPR (technology).


Papers
More filters
Journal ArticleDOI
TL;DR: Silver nanoparticles arranged in two-dimensional arrays experience quadrupolar coupling of plasmon resonances when irradiated with visible light that exemplifies a generic approach in which new optical properties of materials can be engineered by organizing metal nanoparticles in various one-, two-, and three-dimensional structures.
Abstract: Silver nanoparticles arranged in two-dimensional arrays experience quadrupolar coupling of plasmon resonances when irradiated with visible light. This coupling leads to the formation of the coherent plasmon mode characterized by an intense narrow resonance in the blue spectral range in the extinction spectrum. The coupling and the intensity of this mode can be effectively controlled by varying the distance between particles. The interparticle distance was varied by biaxial stretching of the arrays prepared in transparent elastomeric film of poly(dimethylsiloxane). The observed phenomenon exemplifies a generic approach in which new optical properties of materials can be engineered by organizing metal nanoparticles in various one-, two-, and three-dimensional structures. Further development of this approach will result in the discovery of novel principles of both fundamental and practical importance.

209 citations

Journal ArticleDOI
TL;DR: In this paper, surface modification on the Ag plasmon resonance was studied in both colloidal suspensions and colloidal metal films and the conclusion was made that adsorption of I- and Br- ions results in charging of the Ag particle as a whole and a shift of its potential to more negative values.
Abstract: Silver colloids of 20 nm mean particle diameter were prepared by laser ablation and modified by adsorption of iodide and bromide ions. Addition of cytochrome c to this colloid resulted in the reduction of the protein, which was monitored by surface-enhanced resonance Raman scattering and absorption spectroscopies. Colloidal metal films, prepared from the same Ag colloid, were employed to minimize contributions from aggregation. Effects of surface modification on the Ag plasmon resonance were studied in both colloidal suspensions and colloidal metal films. The conclusion was made that adsorption of I- and Br- results in charging of the Ag particle as a whole and a shift of its potential to more negative values. The donated charge is delocalized in a thin surface layer and does not significantly affect the plasmon resonance frequency of the particle.

208 citations

Journal ArticleDOI
TL;DR: In the presence of nanoscale silver island arrays, silicon quantum dots exhibit up to sevenfold luminescence enhancements at emission frequencies that correspond to the collective dipole plasmon resonance frequency of the Ag island array.
Abstract: In the presence of nanoscale silver island arrays, silicon quantum dots exhibit up to sevenfold luminescence enhancements at emission frequencies that correspond to the collective dipole plasmon resonance frequency of the Ag island array. Using electron-beam lithography to alter the pitch and particle diameter, this wavelength-selective enhancement can be varied as the metal array resonance wavelength is tuned from 600 to 900 nm. The luminescence intensity enhancement upon coupling is attributed to an increase in the radiative decay rate of the silicon quantum dots.

208 citations

Journal ArticleDOI
TL;DR: The cadmium ions bind strongly to the sensing surface than other ions and due to this the sensor is highly sensitive for Cd(2+) ions.

207 citations

Journal ArticleDOI
TL;DR: This novel and highly sensitive MCFF SPR sensor will find the potential applications in real time remote sensing and monitoring, ultimately enabling inexpensive and accurate chemical and biochemical analytes detection.
Abstract: A simple multi-core flat fiber (MCFF) based surface plasmon resonance (SPR) sensor operating in telecommunication wavelengths is proposed for refractive index sensing. Chemically stable gold (Au) and titanium dioxide (TiO2) layers are used outside the fiber structure to realize a simple detection mechanism. The modeled sensor shows average wavelength interrogation sensitivity of 9,600 nm/RIU (Refractive Index Unit) and maximum sensitivity of 23,000 nm/RIU in the sensing range of 1.46-1.485 and 1.47-1.475, respectively. Moreover, the refractive index resolution of 4.35 × 10−6 is demonstrated. Additionally, proposed sensor had shown the maximum amplitude interrogation sensitivity of 820 RIU−1, with the sensor resolution of 1.22 × 10−5 RIU. To the best of our knowledge, the proposed sensor achieved the highest wavelength interrogation sensitivity among the reported fiber based SPR sensors. Finally we anticipate that, this novel and highly sensitive MCFF SPR sensor will find the potential applications in real time remote sensing and monitoring, ultimately enabling inexpensive and accurate chemical and biochemical analytes detection.

207 citations


Network Information
Related Topics (5)
Nanoparticle
85.9K papers, 2.6M citations
92% related
Graphene
144.5K papers, 4.9M citations
91% related
Carbon nanotube
109K papers, 3.6M citations
90% related
Raman spectroscopy
122.6K papers, 2.8M citations
90% related
Thin film
275.5K papers, 4.5M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,320
20222,684
20211,240
20201,422
20191,498
20181,528