scispace - formally typeset
Search or ask a question
Topic

Surface plasmon resonance

About: Surface plasmon resonance is a research topic. Over the lifetime, 24909 publications have been published within this topic receiving 810976 citations. The topic is also known as: Surface plasmon resonance & SPR (technology).


Papers
More filters
Journal ArticleDOI
11 Jun 2013-ACS Nano
TL;DR: The fabrication of arrays of Al/Al2O3 core/shell nanoparticles with a metallic-core diameter between 12 and 25 nm that display sharp plasmonic resonances at very high energies, up to 5.8 eV (down to λ = 215 nm).
Abstract: Small aluminum nanoparticles have the potential to exhibit localized surface plasmon resonances in the deep ultraviolet region of the electromagnetic spectrum, however technical and scientific challenges make it difficult to attain this limit. We report the fabrication of arrays of Al/Al2O3 core/shell nanoparticles with a metallic-core diameter between 12 and 25 nm that display sharp plasmonic resonances at very high energies, up to 5.8 eV (down to λ = 215 nm). The arrays were fabricated by means of a straightforward self-organization approach. The experimental spectra were compared with theoretical calculations that allow the correlation of each feature to the corresponding plasmon modes.

178 citations

Journal ArticleDOI
TL;DR: Furube et al. as discussed by the authors highlight the recent progress in two rising areas: solar energy conversion through plasmon-assisted interfacial electron transfer and PLASMIC nanofabrication.
Abstract: Localized surface plasmon resonance (LSPR) of plasmonic nanoparticles and nanostructures has attracted wide attention because the nanoparticles exhibit a strong near-field enhancement through interaction with visible light, enabling subwavelength optics and sensing at the single-molecule level. The extremely fast LSPR decays have raised doubts that such nanoparticles have use in photochemistry and energy storage. Recent studies have demonstrated the capability of such plasmonic systems in producing LSPR-induced hot electrons that are useful in energy conversion and storage when combined with electron-accepting semiconductors. Due to the femtosecond timescale, hot-electron transfer is under intense investigation to promote ongoing applications in photovoltaics and photocatalysis. Concurrently, hot-electron decay results in photothermal responses or plasmonic heating. Importantly, this heating has received renewed interest in photothermal manipulation, despite the developments in optical manipulation using optical forces to move and position nanoparticles and molecules guided by plasmonic nanostructures. To realize plasmonic heating-based manipulation, photothermally generated flows, such as thermophoresis, the Marangoni effect and thermal convection, are exploited. Plasmon-enhanced optical tweezers together with plasmon-induced heating show potential as an ultimate bottom-up method for fabricating nanomaterials. We review recent progress in two fascinating areas: solar energy conversion through interfacial electron transfer in gold-semiconductor composite materials and plasmon-induced nanofabrication. Quantum-level interactions between light and metal nanoparticles could boost the efficiency of solar cells and be used for nanoengineering. A photon and numerous electrons on the surface of a metal can couple together to form a hybrid particle known as a plasmon. Akihiro Furube and Shuichi Hashimoto from Tokushima University review how plasmons can both improve solar energy conversion and provide a means of nanoscale engineering. When plasmons decay, they can create high-energy electrons. Furube and Hashimoto summarize how these ‘hot’ electrons broaden the range of wavelengths over which solar cells operate so that they absorb more light. They also review how researchers can harness the heat created by hot electrons to physically move DNA, proteins and other tiny objects, which will enable complex nanostructures to be constructed with a high level of precision. In this review, we highlight the recent progress in two rising areas: solar energy conversion through plasmon-assisted interfacial electron transfer and plasmonic nanofabrication. Localized surface plasmon resonance (LSPR) of plasmonic nanoparticles and nanostructures has attracted increasing attention because of their strong near-field enhancement by interacting with visible light. Recent studies have demonstrated the capability of such plasmonic systems in producing ‘LSPR-induced hot-electrons’ that are useful in photoenergy conversion and storage when combined with electron-accepting semiconductors. Concurrently, ‘hot-electron decay’ results in strong photothermal responses or plasmonic local heating. This heating has received renewed interest in photothermal manipulation of nanoparticles and molecules.

177 citations

Journal ArticleDOI
TL;DR: A universal metal-molecule−metal sandwich architecture by the self-assembly of Ag nanoparticles and Au NPs of various shapes interconnected with 4-aminothiophenol (4-ATP) molecules was presented in this article.
Abstract: A universal metal−molecule−metal sandwich architecture by the self-assembly of Ag nanoparticles (NPs) and Au NPs of various shapes interconnected with 4-aminothiophenol (4-ATP) molecules was presented. These Ag NPs/4-ATP/Au NPs sandwich structures were characterized by surface enhanced Raman scattering (SERS) using an off-surface plasmon resonance condition. Enhancement factors (EF) on the order of 108 for 9b(b2) vibration mode were observed for the 4-ATP self-assembled monolayers (SAMs) in such sandwich structures. The factors are 2 orders of magnitude larger than that on the monolayer of Au NPs of various shapes under similar condition. More importantly, remarkable increase in the intensity of b2 vibrational modes, which is characteristic of the charge transfer (CT) behavior between metal NPs and 4-ATP molecules, was observed in these sandwich structures under 1064 nm excitation. The obtained EF on these sandwich structure for 9b(b2) is larger than that for 7a vibration mode by a factor of ∼102, demonst...

177 citations

Journal ArticleDOI
TL;DR: Localized surface plasmon resonances, which arise from the collective oscillations of the near-Fermi-level electrons in noble metal nanostructures, have received intense attention in recent years due to their rich, intriguing, and complex optical properties.
Abstract: Localized surface plasmon resonances, which arise from the collective oscillations of the near-Fermi-level electrons in noble metal nanostructures, have received intense atten-tion in recent years due to their rich, intriguing, and complex optical properties. The localized plasmon resonances of Au and Ag nanostructures are spectrally located in the visible to near-infrared range. In addition, Au and Ag nanostructures are relatively stable in ambient environments. They have, therefore, been intensively studied from the perspectives of both funda-mental sciences

177 citations


Network Information
Related Topics (5)
Nanoparticle
85.9K papers, 2.6M citations
92% related
Graphene
144.5K papers, 4.9M citations
91% related
Carbon nanotube
109K papers, 3.6M citations
90% related
Raman spectroscopy
122.6K papers, 2.8M citations
90% related
Thin film
275.5K papers, 4.5M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,320
20222,684
20211,240
20201,422
20191,498
20181,528