scispace - formally typeset
Search or ask a question
Topic

Surface plasmon resonance

About: Surface plasmon resonance is a research topic. Over the lifetime, 24909 publications have been published within this topic receiving 810976 citations. The topic is also known as: Surface plasmon resonance & SPR (technology).


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a unified expression for surface-enhanced Raman spectroscopy (SERS) is presented, which contains a product of three resonance denominators, representing the surface plasmon resonance, the metal-molecule charge-transfer resonance at the Fermi energy, and an allowed molecular resonance.
Abstract: We present a unified expression for surface-enhanced Raman spectroscopy (SERS). The expression contains a product of three resonance denominators, representing the surface plasmon resonance, the metal-molecule charge-transfer resonance at the Fermi energy, and an allowed molecular resonance. This latter resonance is that from which intensity is borrowed for charge transfer, and when the molecular resonance is active it is responsible for surface-enhanced resonance Raman spectroscopy. We examine this expression in various limits, to explore the relative contribution or each resonance. First, we look at the situation in which only the surface plasmon resonance is active and examine the various contributions to the Raman signal, including the surface selection rules. Then we examine additional contributions from charge-transfer or molecular resonances. We show that the three resonances are not totally independent, since they are linked by a product of four matrix elements in the numerator. These linked matrix elements provide comprehensive selection rules for SERS. One involves a harmonic oscillator in the observed normal mode. This is the same mode which appears in the vibronic coupling operator linking one of the states of the allowed molecular resonance to the charge-transfer state. The charge-transfer transition moment is linked to the surface plasmon resonance by the requirement that the transition dipole moment be polarized along the direction of maximum amplitude of the field produced by the plasmon (i.e., perpendicular to the metal surface). We show that these selection rules govern the observed SERS spectral intensities and apply these to the observed spectra of several molecules. We also suggest a quantitative measure of the degree to which charge transfer contributes to the overall SERS enhancement.

759 citations

Journal ArticleDOI
21 Jan 2015-Analyst
TL;DR: The design strategies for nanomaterials and nanostructures to plasmonically enhance optical sensing signals are discussed, also highlighting the applications of plAsmon-enhanced optical sensors in healthcare, homeland security, food safety and environmental monitoring.
Abstract: Surface plasmon resonance (SPR) has found extensive applications in chemi-sensors and biosensors. Plasmons play different roles in different types of optical sensors. SPR transduces a signal in a colorimetric sensor through shifts in the spectral position and intensity in response to external stimuli. SPR can also concentrate the incident electromagnetic field in a nanostructure, modulating fluorescence emission and enabling plasmon-enhanced fluorescence to be used for ultrasensitive detection. Furthermore, plasmons have been extensively used for amplifying a Raman signal in a surface-enhanced Raman scattering sensor. This paper presents a review of recent research progress in plasmon-enhanced optical sensing, giving emphasis on the physical basis of plasmon-enhanced sensors and how these principles guide the design of sensors. In particular, this paper discusses the design strategies for nanomaterials and nanostructures to plasmonically enhance optical sensing signals, also highlighting the applications of plasmon-enhanced optical sensors in healthcare, homeland security, food safety and environmental monitoring.

755 citations

Journal ArticleDOI
TL;DR: A method for biomolecular recognition is reported using light scattering of a single gold nanoparticle functionalized with biotin, resulting in a spectral shift of the particle plasmon resonance.
Abstract: A method for biomolecular recognition is reported using light scattering of a single gold nanoparticle functionalized with biotin. Addition of streptavidin and subsequent specific binding events alter the dielectric environment of the nanoparticle, resulting in a spectral shift of the particle plasmon resonance. As we use single nanoparticles showing a homogeneous scattering spectrum, spectral shifts as small as 2 meV can be detected.

751 citations

Journal ArticleDOI
Hui Wang1, Daniel W. Brandl1, Fei Le1, Peter Nordlander1, Naomi J. Halas1 
TL;DR: A new hybrid nanoparticle is designed and fabricated that combines the intense local fields of nanorods with the highly tunable plasmon resonances of nanoshells, and bears a remarkable resemblance to a grain of rice, inspiring the name "nanorice".
Abstract: We have designed and fabricated a new hybrid nanoparticle that combines the intense local fields of nanorods with the highly tunable plasmon resonances of nanoshells. This dielectric core−metallic shell prolate spheroid nanoparticle bears a remarkable resemblance to a grain of rice, inspiring the name “nanorice”. This geometry possesses far greater structural tunability than either a nanorod or a nanoshell, along with much larger local field intensity enhancements and far greater sensitivity as a surface plasmon resonance (SPR) nanosensor than any dielectric−metal nanostructures reported previously. Invoking the plasmon hybridization picture allows us to understand the plasmon resonances of this geometry, as arising from a hybridization of the primitive plasmons of a solid spheroid and an ellipsoidal cavity inside a continuous metal.

748 citations

Journal ArticleDOI
TL;DR: In this paper, the fundamental photophysics of localized surface plasmon resonance (LSPR) excitation in the context of driving chemical transformations are discussed, and various demonstrated chemical conversions executed using direct plasmoric photocatalysis is reviewed.
Abstract: Recent reports have shown that plasmonic nanostructures can be used to drive direct photocatalysis with visible photons, where nanostructures act as the light absorber and the catalytic active site. These reports have showcased direct plasmon driven photocatalysis as a route to concentrate and channel the energy of low intensity visible light into adsorbed molecules, enhancing the rates of chemical transformations, and offering pathways to control reaction selectivity. In this perspective, we will discuss the fundamental photophysics of localized surface plasmon resonance (LSPR) excitation in the context of driving chemical transformations. The various demonstrated chemical conversions executed using direct plasmonic photocatalysis will be reviewed. Experimental observations, such as the dependence of photocatalytic rate on illumination intensity and photon energy, will be related to microscopic mechanisms of photocatalysis. In addition, theoretical treatments of various mechanisms within the process of d...

743 citations


Network Information
Related Topics (5)
Nanoparticle
85.9K papers, 2.6M citations
92% related
Graphene
144.5K papers, 4.9M citations
91% related
Carbon nanotube
109K papers, 3.6M citations
90% related
Raman spectroscopy
122.6K papers, 2.8M citations
90% related
Thin film
275.5K papers, 4.5M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,320
20222,684
20211,240
20201,422
20191,498
20181,528