scispace - formally typeset
Search or ask a question
Topic

Surface plasmon resonance

About: Surface plasmon resonance is a research topic. Over the lifetime, 24909 publications have been published within this topic receiving 810976 citations. The topic is also known as: Surface plasmon resonance & SPR (technology).


Papers
More filters
Journal ArticleDOI
TL;DR: Mechanism investigations show that the functional group of Sudan oxidized by AgNO3 is the phenol group, not the nitrogen-nitrogen double bond, which would make the PRLS method much more practical.
Abstract: A visual light scattering detection method of Sudan dyes is reported in food products based on the formation of silver nanoparticles (NPs) . Sudan dyes including I, II, III and IV have reducibility due to the nitrogen−nitrogen double bond and phenol group in their molecular structure, and a redox reaction could occur with AgNO3. Owing to the formation of silver NPs as a result of the redox reaction, color changes could be observed by eye from the red of Sudan to the brown of silver NPs, resulting in strong plasmon resonance light scattering (PRLS) signals characterized at 452 nm, which could be measured using a common spectrofluorometer. It was found that the PRLS intensities were proportional to the dye concentrations over the range of 0.2−2.4 μM Sudan I, 0.1−2.4 μM Sudan II, 0.1−2.4 μM Sudan III, and 0.2−3.0 μM Sudan IV, with the corresponding limits of determination (3σ) of 3.2, 3.0, 3.2, and 2.9 nM, respectively. Using hot chili as a model sample, detection could be made with the recovery of 90.8−103....

158 citations

Journal ArticleDOI
TL;DR: The surface plasmon effect on polymer solar cells and polymer light-emitting diodes is demonstrated by using metal nanoparticles prepared from block copolymer templates, resulting in a significant surface plAsmon effect in the optoelectronic devices.
Abstract: The surface plasmon effect on polymer solar cells and polymer light-emitting diodes is demonstrated by using metal nanoparticles prepared from block copolymer templates. Light absorption of the polymer thin layer is increased with the incorporation of metallic nanostructures, resulting in a significant surface plasmon effect in the optoelectronic devices.

158 citations

Journal ArticleDOI
TL;DR: Property of AuNPs and their utilization for the development of novel molecular assays, including AuNP-based colorimetric assays in particular show great potential in point-of-care testing assays.
Abstract: Gold nanoparticles (AuNPs) exhibit a unique phenomenon, known as surface plasmon resonance, which is responsible for their large absorption and scattering cross-sections, which are four to five orders of magnitude larger than those of conventional dyes. In addition, their optical properties can be controlled by varying their sizes, shapes and compositions. AuNPs can be easily synthesized and functionalized with different biomolecules including oligonucleotides. Numerous methods have been utilized for detecting AuNPs such as colorimetric, scanometric, fluorescence, surface-enhanced Raman scattering and electrochemical techniques. These unique aspects have permitted the development of novel AuNP-based assays for molecular diagnostics which promise increased sensitivity and specificity, multiplexing capability, and short turnaround times. AuNP-based colorimetric assays in particular show great potential in point-of-care testing assays. This review discusses properties of AuNPs and their utilization for the development of novel molecular assays.

158 citations

Journal ArticleDOI
01 Aug 2008-Small
TL;DR: A simplified synthesis of hollow gold nanoshells 20-50 nm in diameter via the well-established templated galvanic replacement reaction of silver for gold is presented.
Abstract: A simplified synthesis of hollow gold nanoshells 20-50 nm in diameter via the well-established templated galvanic replacement reaction of silver for gold is presented. The surface plasmon resonance absorbance of the nanoshells is tuned using basic colloid chemistry to control the size of the silver templates. The gold nanoshells have an aqueous core and are varied in size and shell thickness depending on the silver/gold reagent ratios. The template replacement chemistry is rapid, highly scalable, uses minimal amounts of toxic reagents, and in many cases is a true one-pot synthesis. The smallest nanoshells (20-nm diameter, 7-nm wall thickness) reach the highest temperature on irradiation with femtosecond light pulses in the near infrared and anneal to form spherical nanoparticles fastest, even though their plasmon resonance does not overlap as well as the larger nanoshells (50-nm diameter, 7-nm wall thickness) with 800-nm wavelength excitation.

158 citations


Network Information
Related Topics (5)
Nanoparticle
85.9K papers, 2.6M citations
92% related
Graphene
144.5K papers, 4.9M citations
91% related
Carbon nanotube
109K papers, 3.6M citations
90% related
Raman spectroscopy
122.6K papers, 2.8M citations
90% related
Thin film
275.5K papers, 4.5M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,320
20222,684
20211,240
20201,422
20191,498
20181,528