scispace - formally typeset
Search or ask a question
Topic

Surface plasmon resonance

About: Surface plasmon resonance is a research topic. Over the lifetime, 24909 publications have been published within this topic receiving 810976 citations. The topic is also known as: Surface plasmon resonance & SPR (technology).


Papers
More filters
Journal ArticleDOI
TL;DR: The ability to control the size, shape, and material of a surface has reinvigorated the field of surface-enhanced Raman spectroscopy (SERS) as mentioned in this paper.
Abstract: The ability to control the size, shape, and material of a surface has reinvigorated the field of surface-enhanced Raman spectroscopy (SERS). Because excitation of the localized surface plasmon resonance of a nanostructured surface or nanoparticle lies at the heart of SERS, the ability to reliably control the surface characteristics has taken SERS from an interesting surface phenomenon to a rapidly developing analytical tool. This article first explains many fundamental features of SERS and then describes the use of nanosphere lithography for the fabrication of highly reproducible and robust SERS substrates. In particular, we review metal film over nanosphere surfaces as excellent candidates for several experiments that were once impossible with more primitive SERS substrates (e.g., metal island films). The article also describes progress in applying SERS to the detection of chemical warfare agents and several biological molecules.

2,578 citations

Journal ArticleDOI
TL;DR: A survey of the most common methods of preparation and arraying of materials with localized surface plasmon resonance (LSPR), and of the optical manifestations of LSPR can be found in this article.
Abstract: Recent advances in the exploitation of localized surface plasmons (charge density oscillations confined to metallic nanoparticles and nanostructures) in nanoscale optics and photonics, as well as in the construction of sensors and biosensors, are reviewed here. In particular, subsequent to brief surveys of the most-commonly used methods of preparation and arraying of materials with localized surface plasmon resonance (LSPR), and of the optical manifestations of LSPR, attention will be focused on the exploitation of metallic nanostructures as waveguides; as optical transmission, information storage, and nanophotonic devices; as switches; as resonant light scatterers (employed in the different near-field scanning optical microscopies); and finally as sensors and biosensors.

2,450 citations

Journal ArticleDOI
TL;DR: In plasmonics, the metal nanostructures can serve as antennas to convert light into localized electric fields (E-fields) or as waveguides to route light to desired locations with nanometer precision through a strong interaction between incident light and free electrons in the nanostructure.
Abstract: Coinage metals, such as Au, Ag, and Cu, have been important materials throughout history.1 While in ancient cultures they were admired primarily for their ability to reflect light, their applications have become far more sophisticated with our increased understanding and control of the atomic world. Today, these metals are widely used in electronics, catalysis, and as structural materials, but when they are fashioned into structures with nanometer-sized dimensions, they also become enablers for a completely different set of applications that involve light. These new applications go far beyond merely reflecting light, and have renewed our interest in maneuvering the interactions between metals and light in a field known as plasmonics.2–6 In plasmonics, the metal nanostructures can serve as antennas to convert light into localized electric fields (E-fields) or as waveguides to route light to desired locations with nanometer precision. These applications are made possible through a strong interaction between incident light and free electrons in the nanostructures. With a tight control over the nanostructures in terms of size and shape, light can be effectively manipulated and controlled with unprecedented accuracy.3,7 While many new technologies stand to be realized from plasmonics, with notable examples including superlenses,8 invisible cloaks,9 and quantum computing,10,11 conventional technologies like microprocessors and photovoltaic devices could also be made significantly faster and more efficient with the integration of plasmonic nanostructures.12–15 Of the metals, Ag has probably played the most important role in the development of plasmonics, and its unique properties make it well-suited for most of the next-generation plasmonic technologies.16–18 1.1. What is Plasmonics? Plasmonics is related to the localization, guiding, and manipulation of electromagnetic waves beyond the diffraction limit and down to the nanometer length scale.4,6 The key component of plasmonics is a metal, because it supports surface plasmon polariton modes (indicated as surface plasmons or SPs throughout this review), which are electromagnetic waves coupled to the collective oscillations of free electrons in the metal. While there are a rich variety of plasmonic metal nanostructures, they can be differentiated based on the plasmonic modes they support: localized surface plasmons (LSPs) or propagating surface plasmons (PSPs).5,19 In LSPs, the time-varying electric field associated with the light (Eo) exerts a force on the gas of negatively charged electrons in the conduction band of the metal and drives them to oscillate collectively. At a certain excitation frequency (w), this oscillation will be in resonance with the incident light, resulting in a strong oscillation of the surface electrons, commonly known as a localized surface plasmon resonance (LSPR) mode.20 This phenomenon is illustrated in Figure 1A. Structures that support LSPRs experience a uniform Eo when excited by light as their dimensions are much smaller than the wavelength of the light. Figure 1 Schematic illustration of the two types of plasmonic nanostructures discussed in this article as excited by the electric field (Eo) of incident light with wavevector (k). In (A) the nanostructure is smaller than the wavelength of light and the free electrons ... In contrast, PSPs are supported by structures that have at least one dimension that approaches the excitation wavelength, as shown in Figure 1B.4 In this case, the Eo is not uniform across the structure and other effects must be considered. In such a structure, like a nanowire for example, SPs propagate back and forth between the ends of the structure. This can be described as a Fabry-Perot resonator with resonance condition l=nλsp, where l is the length of the nanowire, n is an integer, and λsp is the wavelength of the PSP mode.21,22 Reflection from the ends of the structure must also be considered, which can change the phase and resonant length. Propagation lengths can be in the tens of micrometers (for nanowires) and the PSP waves can be manipulated by controlling the geometrical parameters of the structure.23

2,421 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-analysis of four-Wave Mixing and its applications in nanofiltration, which shows clear trends in high-performance liquid chromatography and also investigates the role of nano-magnifying lens technology in this process.
Abstract: 12.2.2. Four-Wave Mixing (FWM) 4849 12.2.3. Dye Aggregation 4850 12.2.4. Optoelectronic Nanodevices 4850 12.3. Sensor 4851 12.3.1. Chemical Sensor 4851 12.3.2. Biological Sensor 4851 12.4. Catalysis 4852 13. Conclusion and Perspectives 4852 14. Abbreviations 4853 15. Acknowledgements 4854 16. References 4854 * Corresponding author E-mail: tpal@chem.iitkgp.ernet.in. † Raidighi College. § Indian Institute of Technology. 4797 Chem. Rev. 2007, 107, 4797−4862

2,414 citations

Journal ArticleDOI
TL;DR: In this new nanoparticle-based detection system, Au particles are used to complex a 24-base polynucleotide target and exhibit characteristic, exceptionally sharp “melting transitions” which allows one to distinguish target sequences that contain one base end mismatches, deletions, or an insertion from the fully complementary target.
Abstract: Selective colorimetric polynucleotide detection based on Au nanoparticle probes which align in a “tail-to-tail” fashion onto a target polynucleotide is described. In this new nanoparticle-based detection system, Au particles (∼13 nm diameter), which are capped with 3‘- and 5‘-(alkanethiol)oligonucleotides, are used to complex a 24-base polynucleotide target. Hybridization of the target with the probes results in the formation of an extended polymeric Au nanoparticle/polynucleotide aggregate, which triggers a red to purple color change in solution. The color change is due to a red shift in the surface plasmon resonance of the Au nanoparticles. The aggregates exhibit characteristic, exceptionally sharp “melting transitions” (monitored at 260 or 700 nm), which allows one to distinguish target sequences that contain one base end mismatches, deletions, or an insertion from the fully complementary target. When test solutions are spotted onto a C18 reverse-phase thin-layer chromatography plate, color differentia...

2,244 citations


Network Information
Related Topics (5)
Nanoparticle
85.9K papers, 2.6M citations
92% related
Graphene
144.5K papers, 4.9M citations
91% related
Carbon nanotube
109K papers, 3.6M citations
90% related
Raman spectroscopy
122.6K papers, 2.8M citations
90% related
Thin film
275.5K papers, 4.5M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,320
20222,684
20211,240
20201,422
20191,498
20181,528