scispace - formally typeset
Search or ask a question
Topic

Surface plasmon resonance

About: Surface plasmon resonance is a research topic. Over the lifetime, 24909 publications have been published within this topic receiving 810976 citations. The topic is also known as: Surface plasmon resonance & SPR (technology).


Papers
More filters
Journal ArticleDOI
TL;DR: The surface plasmon resonance (SPR) is a new optical technique in the field of chemical sensing as discussed by the authors, which can be used for gas detection, together with results from exploratory experiments with relevance to biosensing.

2,243 citations

Journal ArticleDOI
TL;DR: A surface plasmon polariton (SPP) is an electromagnetic excitation existing on the surface of a good metal, whose electromagnetic field decays exponentially with distance from the surface.

2,211 citations

Journal ArticleDOI
TL;DR: Fundamentals of SPR affinity biosensors are reviewed and recent advances in development and applications of SPR biosensor are discussed.
Abstract: Surface plasmon resonance (SPR) biosensors are optical sensors exploiting special electromagnetic waves—surface plasmon-polaritons—to probe interactions between an analyte in solution and a biomolecular recognition element immobilized on the SPR sensor surface. Major application areas include detection of biological analytes and analysis of biomolecular interactions where SPR biosensors provide benefits of label-free real-time analytical technology. This paper reviews fundamentals of SPR affinity biosensors and discusses recent advances in development and applications of SPR biosensors.

2,123 citations

Journal ArticleDOI
TL;DR: The LSPR nanobiosensor provides a pathway to ultrasensitive biodetection experiments with extremely simple, small, light, robust, low-cost instrumentation that will greatly facilitate field-portable environmental or point-of-service medical diagnostic applications.
Abstract: Triangular silver nanoparticles (∼100 nm wide and 50 nm high) have remarkable optical properties. In particular, the peak extinction wavelength, λmax of their localized surface plasmon resonance (LSPR) spectrum is unexpectedly sensitive to nanoparticle size, shape, and local (∼10−30 nm) external dielectric environment. This sensitivity of the LSPR λmax to the nanoenvironment has allowed us to develop a new class of nanoscale affinity biosensors. The essential characteristics and operational principles of these LSPR nanobiosensors will be illustrated using the well-studied biotin−streptavidin system. Exposure of biotin-functionalized Ag nanotriangles to 100 nM streptavidin (SA) caused a 27.0 nm red-shift in the LSPR λmax. The LSPR λmax shift, ΔR/ΔRmax, versus [SA] response curve was measured over the concentration range 10-15 M < [SA] < 10-6 M. Comparison of the data with the theoretical normalized response expected for 1:1 binding of a ligand to a multivalent receptor with different sites but invariant af...

2,018 citations

Journal ArticleDOI
TL;DR: In this article, the physical origin of surface plasmon absorption in gold nanoparticles with emphasis on the Mie and also the Maxwell-Garnett theory is discussed. And the effects of particle size and shape on the resonance condition are reviewed.
Abstract: Driven by the search for new materials with interesting and unique properties and also by the fundamental question of how atomic and molecular physical behaviour develops with increasing size, the field of nanoparticle research has grown immensely in the last two decades. Partially for these reasons, colloidal solutions of metallic (especially silver and gold) nanoparticles have long fascinated scientists because of their very intense colours. The intense red colour of colloidal gold nanoparticles is due to their surface plasmon absorption. This article describes the physical origin of the surface plasmon absorption in gold nanoparticles with emphasis on the Mie and also the Maxwell-Garnett theory and reviews the effects of particle size and shape on the resonance condition. A better understanding of the relationship between the optical absorption spectrum (in particular, the plasmon resonance) and such particle properties as its dimensions or surrounding environment can prove fruitful for the use of the ...

2,007 citations


Network Information
Related Topics (5)
Nanoparticle
85.9K papers, 2.6M citations
92% related
Graphene
144.5K papers, 4.9M citations
91% related
Carbon nanotube
109K papers, 3.6M citations
90% related
Raman spectroscopy
122.6K papers, 2.8M citations
90% related
Thin film
275.5K papers, 4.5M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,320
20222,684
20211,240
20201,422
20191,498
20181,528